hdu5816 卡特兰数+dp
题意:共n张无中生有,m张攻击牌。每张攻击牌攻击力已知,敌方有p点血。随机洗牌。游戏开始,己方抽取一张手牌,若是无中生有则可再抽两张牌。求能在第一回合内将敌方杀死的概率。
n+m <= 20, p <= 1000;
很明显,与卡特兰数有关,原先栈内数量为1,抽到无中生有即入栈,否则出栈。
枚举攻击牌,求出该攻击牌组合下,用完所有手牌将对方杀死的方案数,以及抽光所有牌将对方杀死的方案数(手牌有剩)。
不算预处理的复杂度,每组数据的时间复杂度为O(2^m)
#include <cstdio>
typedef long long ll; int bc[<<], sum[<<], tmp[<<];
int C[][];
ll fact[]; ll gcd(ll a, ll b){
return b == ? a :gcd(b, a%b);
} void init(){
int i, j;
bc[] = ;
for (i=; i<(<<); i++) bc[i] = bc[i^(i&-i)] + ;
fact[] = ;
for (i=; i<=; i++) fact[i] = fact[i-] * i;
C[][] = ;
for (i=; i<=; i++){
C[i][] = C[i][i] = ;
for (j=; j<i; j++) C[i][j] = C[i-][j] + C[i-][j-];
}
} int main(){
ll a, b, d;
int p, n, m, t, i;
init();
scanf("%d", &t);
while (t --){
scanf("%d %d %d", &p, &n, &m);
for (i=; i<m; i++) scanf("%d", &tmp[<<i]);
sum[] = ;
for (i=; i<(<<m); i++) sum[i] = sum[i^(i&-i)] + tmp[i&-i];
a = ;
for (i=; i<(<<m); i++){
if (sum[i] >= p && bc[i] <= n + ){
//C(n + m − 1,m) − C(n + m − 1,m − 1)
//手牌用完,到(bc[i], bc[i])的方案数,即到(bc[i], bc[i]-1)的方案数, 需要bc[i]-1张无中生有
a += C[n][bc[i]-] * (C[ bc[i]+bc[i]- ][ bc[i]- ] - C[ bc[i]+bc[i]- ][ bc[i]- ])* fact[bc[i]-] * fact[bc[i]] * fact[n+m-*bc[i]+];
//手牌用不完, 到(n+1, m)的方案数
if(bc[i] == m&&bc[i] < n+)
a += (C[ m+n ][ m ] - C[ m+n ][ m- ])* fact[n] * fact[m];
}
}
b = fact[n+m];
d = gcd(a, b);
printf("%I64d/%I64d\n", a / d, b / d);
}
return ;
}
当时写的时候是以 状态表示的牌将敌方杀死 作为结束点,似乎还要容斥,比如用1,2,3杀死对方和用1,2就杀死对方,复杂度也可能会爆炸;
其实应该换一个角度,考虑手牌用光将对方杀死,再加上手牌用不光的case,终点已知,那么就不会有容斥关系。
hdu5816 卡特兰数+dp的更多相关文章
- 【HDU 5370】 Tree Maker(卡特兰数+dp)
Tree Maker Problem Description Tree Lover loves trees crazily. One day he invents an interesting gam ...
- hdu2067 小兔的棋盘 DP/数学/卡特兰数
棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...
- 【8.19校内测试】【背包】【卡特兰数】【数位dp】
早上随便搞搞t1t3就开始划水了,t2一看就是组合数学看着肚子疼...结果t1t3都a了??感天动地. 从小到大排序,从前到后枚举i,表示i是整个背包中不选的物品中代价最小的那个,即i不选,1到i-1 ...
- Luogu P1754球迷购票问题【dp/卡特兰数】By cellur925
题目传送门 虽然是水dp,但我感到还是有些无从下手== f[i][j]表示还剩i个50元没考虑,j个100元没考虑的方案数,可有转移f[i][j]=f[i-1][j]+f[i][j-1] 但其实它也可 ...
- [LeetCode]96. 不同的二叉搜索树(DP,卡特兰数)
题目 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ ...
- 2019牛客暑期多校训练营(第一场)E ABBA (DP/卡特兰数)
传送门 知识点:卡特兰数/动态规划 法一:动态规划 由题意易知字符串的任何一个前缀都满足\(cnt(A) - cnt(B) \le n , cnt(B)-cnt(A)\le m\) \(d[i][j] ...
- 卡特兰数(Catalan)
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...
- LightOJ1170 - Counting Perfect BST(卡特兰数)
题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...
- hdu 4828 Grids(拓展欧几里得+卡特兰数)
题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> ...
随机推荐
- MFC中的CDC,CClientDC,CPaintDC,CWindowDC的区别
转自 http://blog.csdn.net/guoquan2003/article/details/4534716 CDC是Windows绘图设备的基类. CClientDC:(1)(客户区设备上 ...
- android应用的数据应该保存到哪儿
王永超王永超嫖娼 做android app开发会涉及到不同数据的保存,比如数据缓存,客户登陆信息保存,客户状态的保存等等. 那针对这不同的数据我们应该保存在什么地方呢? 1.应用卸载也不会删除的数据 ...
- ACM第一站————快速排序
转载请注明出处,谢谢!http://www.cnblogs.com/Asimple/p/5455125.html 快速排序(Quicksort)是对冒泡排序的一种改进. 快速排序由C. A. ...
- 在lua的string库和正则表达式
一.前提要了解一下lua 的string几个方法 1. string库中所有的字符索引从前往后是1,2,...;从后往前是-1,-2,... 2. string库中所有的function都不会直接操作 ...
- 分页sql
/// <summary> /// 根据页数分页 /// </summary> /// <param name="page"></para ...
- 给用户添加sudo权限
centos中默认创建的新用户是没有sudo权限的. 在文件/etc/sudoers中添加即可: ## Allow root to run any commands anywhere root ALL ...
- php访问mysql数据库
//建一个连接,造一个连接对象 $db = new MySQLi("localhost","root","123","mydb&q ...
- flume ng之TailSource
在它里面自带了一个TailSource以及TailDirSource,这个Source是负责读取一个文件,并一行一行的发送到sink端,而在flume-ng 1.4.0里面没有自带TailSource ...
- Linux 性能监测:Network
网络的监测是所有 Linux 子系统里面最复杂的,有太多的因素在里面,比如:延迟.阻塞.冲突.丢包等,更糟的是与 Linux 主机相连的路由器.交换机.无线信号都会影响到整体网络并且很难判断是因为 L ...
- HDU 5059 Harry And Biological Teacher
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5069 题意:给出n个串,m个询问,每个询问(u,v),求u的一个最长后缀是v的前缀. 思路:离线.将关于u ...