hdu5816 卡特兰数+dp
题意:共n张无中生有,m张攻击牌。每张攻击牌攻击力已知,敌方有p点血。随机洗牌。游戏开始,己方抽取一张手牌,若是无中生有则可再抽两张牌。求能在第一回合内将敌方杀死的概率。
n+m <= 20, p <= 1000;
很明显,与卡特兰数有关,原先栈内数量为1,抽到无中生有即入栈,否则出栈。
枚举攻击牌,求出该攻击牌组合下,用完所有手牌将对方杀死的方案数,以及抽光所有牌将对方杀死的方案数(手牌有剩)。
不算预处理的复杂度,每组数据的时间复杂度为O(2^m)
#include <cstdio>
typedef long long ll; int bc[<<], sum[<<], tmp[<<];
int C[][];
ll fact[]; ll gcd(ll a, ll b){
return b == ? a :gcd(b, a%b);
} void init(){
int i, j;
bc[] = ;
for (i=; i<(<<); i++) bc[i] = bc[i^(i&-i)] + ;
fact[] = ;
for (i=; i<=; i++) fact[i] = fact[i-] * i;
C[][] = ;
for (i=; i<=; i++){
C[i][] = C[i][i] = ;
for (j=; j<i; j++) C[i][j] = C[i-][j] + C[i-][j-];
}
} int main(){
ll a, b, d;
int p, n, m, t, i;
init();
scanf("%d", &t);
while (t --){
scanf("%d %d %d", &p, &n, &m);
for (i=; i<m; i++) scanf("%d", &tmp[<<i]);
sum[] = ;
for (i=; i<(<<m); i++) sum[i] = sum[i^(i&-i)] + tmp[i&-i];
a = ;
for (i=; i<(<<m); i++){
if (sum[i] >= p && bc[i] <= n + ){
//C(n + m − 1,m) − C(n + m − 1,m − 1)
//手牌用完,到(bc[i], bc[i])的方案数,即到(bc[i], bc[i]-1)的方案数, 需要bc[i]-1张无中生有
a += C[n][bc[i]-] * (C[ bc[i]+bc[i]- ][ bc[i]- ] - C[ bc[i]+bc[i]- ][ bc[i]- ])* fact[bc[i]-] * fact[bc[i]] * fact[n+m-*bc[i]+];
//手牌用不完, 到(n+1, m)的方案数
if(bc[i] == m&&bc[i] < n+)
a += (C[ m+n ][ m ] - C[ m+n ][ m- ])* fact[n] * fact[m];
}
}
b = fact[n+m];
d = gcd(a, b);
printf("%I64d/%I64d\n", a / d, b / d);
}
return ;
}
当时写的时候是以 状态表示的牌将敌方杀死 作为结束点,似乎还要容斥,比如用1,2,3杀死对方和用1,2就杀死对方,复杂度也可能会爆炸;
其实应该换一个角度,考虑手牌用光将对方杀死,再加上手牌用不光的case,终点已知,那么就不会有容斥关系。
hdu5816 卡特兰数+dp的更多相关文章
- 【HDU 5370】 Tree Maker(卡特兰数+dp)
Tree Maker Problem Description Tree Lover loves trees crazily. One day he invents an interesting gam ...
- hdu2067 小兔的棋盘 DP/数学/卡特兰数
棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...
- 【8.19校内测试】【背包】【卡特兰数】【数位dp】
早上随便搞搞t1t3就开始划水了,t2一看就是组合数学看着肚子疼...结果t1t3都a了??感天动地. 从小到大排序,从前到后枚举i,表示i是整个背包中不选的物品中代价最小的那个,即i不选,1到i-1 ...
- Luogu P1754球迷购票问题【dp/卡特兰数】By cellur925
题目传送门 虽然是水dp,但我感到还是有些无从下手== f[i][j]表示还剩i个50元没考虑,j个100元没考虑的方案数,可有转移f[i][j]=f[i-1][j]+f[i][j-1] 但其实它也可 ...
- [LeetCode]96. 不同的二叉搜索树(DP,卡特兰数)
题目 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ ...
- 2019牛客暑期多校训练营(第一场)E ABBA (DP/卡特兰数)
传送门 知识点:卡特兰数/动态规划 法一:动态规划 由题意易知字符串的任何一个前缀都满足\(cnt(A) - cnt(B) \le n , cnt(B)-cnt(A)\le m\) \(d[i][j] ...
- 卡特兰数(Catalan)
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...
- LightOJ1170 - Counting Perfect BST(卡特兰数)
题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...
- hdu 4828 Grids(拓展欧几里得+卡特兰数)
题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> ...
随机推荐
- C++:FMC 错误
1.generated debug assertion -- File: docsingl.cpp Line: 215 MFC程序vs2008编译通过,运行时出错,无法打开,提示f:\dd\xxxx的 ...
- Mysql ibdata 丢失或损坏如何通过frm&ibd 恢复数据
mysql存储在磁盘中,各种天灾人祸都会导致数据丢失.大公司的时候我们常常需要做好数据冷热备,对于小公司来说要做好所有数据备份需要支出大量的成本,很多公司也是不现实的.万一还没有做好备份,数据被误删除 ...
- GHOST出错
error 15:file not found grub问题VFS:Cannot open root device "sda" or unknow-block 可能是磁盘驱动程序问 ...
- python :eval将字符串转换成字典
#将字符串打印成字典 b=''' {'record': {'weight':20,'server':'100.1.7.9','maxconn':50},'backend': 'www.oldboy.o ...
- 通过URl将服务器的图片下载到本地并压缩
private void downloadServerPic(final String url1) { new Thread() { @Override public void run() { // ...
- Cookie案例
实现的功能是:在页面上点击,各种书名,跳转到另一个页面,在点解return 回到原来的页面,并且最下面出现刚才点击的书名:进行多次操作,都会出现刚刚点击的书名: 类似于:在浏览器上显示你登录的记录: ...
- 一些常用的SQL查询语句
学习网站:http://www.w3cschool.cc/sql/sql-tutorial.html 一:查询所有表的属性 SELECT 'ALTER TABLE '+ CASE WHEN O.sch ...
- JAVA基础知识之网络编程——-使用Proxy创建连接
在前面的HTTP网络通信的例子中,使用了URLConnection conn = url.openConnection();连接网络, 如果改用URLConnection conn = url.ope ...
- QT笔记之模态对话框及非模态对话框
模态对话框(Modal Dialog)与非模态对话框(Modeless Dialog)的概念不是Qt所独有的,在各种不同的平台下都存在.又有叫法是称为模式对话框,无模式对话框等.所谓模态对话框就是在其 ...
- oracle 主键自增
将表t_uaer的字段ID设置为自增:(用序列sequence的方法来实现) ----创建表 Create table t_user( Id number(6), userid varchar2(20 ...