hidden markov model

markov model: 把一个总随机过程看成一系列状态的不断转移, 其特性主要使用转移概率来表示。

HMM:认为模型的状态是不可观测的(hidden), 能观测的只是它表现出的一些观测值。

MM 的观测序列本身就是状态序列

HMM 的观测序列不是状态序列

设有N个篮子,每个都装了许多彩色小球,小球颜色有M种.现在按下列步骤产生出一个输出符号(颜色)序列:按某个初始概率分步,随机的选定一个篮子,从中随机地取出一个球,记录球的颜色作为第一个输出符号,并把球放回原来的篮子.然后按照某个转移概率分布(与当前篮子相联系)选择一个新的篮子(也可能仍停留在当前篮子),并从中随机取出一个球,记下颜色作为第二个输出符号.

如此重复地做下去,这样便得到一个输出序列.我们能够观测到的是这个输出序列—颜色符号序列,而状态(篮子)之间的转移(状态序列)被隐藏起来了.每个状态(篮子)输出什么符号(颜色)是由它的输出概率分布(篮子中彩球数目分布)来随机决定的.选择哪个篮子(状态)输出颜色由状态转移矩阵来决定.

隐马尔科夫模型的三个基本问题:

1, evaluation:从骰子数列中推断是否使用了作弊骰子,如果知道使用了作弊骰子, 那么在投掷骰子的过程中出现这个序列的概率有多大。

2,decoding: 如果确实使用了作弊骰子, 这些序列中哪些点是有B 投掷出来的。

3, learning: 参数训练问题,

q是某个状态序列产生某个观测值的概率

P是从一个状态转移到另一个状态的概率

使用Viterbi算法。定义一个路径最优变量, 然后采取递推的方式迭代, 进而降低计算量。

HMM 在CpG island中的应用,输入DNA片段, 判断是否为CpG island.

对于一条DNA , 两种情况, 是CpG island and not CpG island.模型建立:

识别CpG区域:

识别CpG区域相当于寻找连续的C+和G+组合的区域,相

当于把生成原始序列隐状态鉴别出来,隐状态中C+和G+

连续较高的区域为CpG区域,这对应到隐马尔可夫模型的

第二个问题,译码问题。

应用HMM3类基本问题中解码问题(decoding ):

给定一个隐马尔柯夫模型M 和一个字符序列X, 在M中为X

寻找一条最优路径P*,要求使得P(X|P*)最大(Viterbi算

法)

如果找到最优路径P*,则这条路径穿过的“+” 状态将对

应于CpG岛。

更细节的问题查看保存在云盘上的PPt

理解HMM的更多相关文章

  1. 理解HMM算法

    长这样: 理解的前提: (1)状态:生成观测值的变量(上图中的"吃"和"睡"). (2)观测值:状态乘上输出概率对应的输出(上图中的橙色节点). (3)输出概率 ...

  2. [综]隐马尔可夫模型Hidden Markov Model (HMM)

    http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...

  3. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  4. viterbi维特比算法和隐马尔可夫模型(HMM)

    隐马尔可夫模型(HMM) 原文地址:http://www.cnblogs.com/jacklu/p/7753471.html 本文结合了王晓刚老师的ENGG 5202 Pattern Recognit ...

  5. HMM隐马尔可夫模型来龙去脉(二)

    目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 H ...

  6. 语音激活检测(VAD)--前向神经网络方法(Alex)

    这是学习时的笔记,包含相关资料链接,有的当时没有细看,记录下来在需要的时候回顾. 有些较混乱的部分,后续会再更新. 欢迎感兴趣的小伙伴一起讨论,跪求大神指点~ VAD(ffnn神经网络)-Alex t ...

  7. NLP知识十大结构

    NLP知识十大结构 2.1形式语言与自动机 语言:按照一定规律构成的句子或者字符串的有限或者无限的集合. 描述语言的三种途径: 穷举法 文法(产生式系统)描述 自动机 自然语言不是人为设计而是自然进化 ...

  8. 信息检索及DM必备知识总结:luncene

    原文链接:http://blog.csdn.net/htw2012/article/details/17734529 有少量修改!如有疑问,请访问原作者. 一:信息检索领域: 信息检索和网络数据领域( ...

  9. 通俗理解隐马尔科夫模型HMM(转载)

    作者:Yang Eninala 链接:https://www.zhihu.com/question/20962240/answer/33438846 来源:知乎 著作权归作者所有,转载请联系作者获得授 ...

随机推荐

  1. HDU 5763 Another Meaning

    HDU 5763 Another Meaning 题意:一个字串有可能在模式串出现多次,问有多少种可能出现的情况.关键是有重合的字串是不能同时计入的. 思路:先用kmp求出所有字串的位置.然后,dp. ...

  2. ubuntu 设置静态ip

    1. 为网卡配置静态IP地址 编辑文件/etc/network/interfaces: sudo vi /etc/network/interfaces 并用下面的行来替换有关eth0的行: # The ...

  3. ios下input focus弹出软键盘造成fixed元素位置移位

    正常状态下 input focus软键盘弹出时 问题描述: 头部结构fixed,滚动到下部内容区域,input.textarea等focus弹出软键盘时,头部位置偏移被居中(该问题ios7 beta3 ...

  4. win7 摄像头驱动软件找不到,只有sys文件

    有的驱动只有sys文件,但是仍然可以在qq视频等用,只是找不到amcap.exe等可执行文件, 因为没有摄像头软件,下载一个安装上即可

  5. CSS实现图片快速等比例缩放,效果佳

    初学者在实现图片等比例缩放,通常会使用js编写逻辑来控制高或宽,达到自动缩放的效果. 这里提供一种纯CSS的图片缩放功能,请看代码: <style type="text/css&quo ...

  6. 使用plsql连接别人的oracle(转)

    文章来源:http://www.linuxidc.com/Linux/2013-04/82738.htm oracle服务有时候我们觉得太大,所以我们只需要在本机上装一个oracle客户端和plsql ...

  7. Map-Reduce的工作机制

    Mapper “Map-Reduce”的思想就是“分而治之” Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”而执行 “简单的任务”有几个意思:1.数据或计算规模相对于原任务要大大缩小 ...

  8. Windows 8.1 Update 2更新了什么?

    Windows 8.1的第二个更新将于8月12日(周二补丁日)发布,官方命名是“8月更新”(August Update).但是之前我们已经知道Windows 8.1 Update 2不可能重新提供开始 ...

  9. SharePoint 2013 开发——开发自定义操作APP

    博客地址:http://blog.csdn.net/FoxDave 自定义操作即我们所说的Ribbon和ECB(Edit Control Block),在SharePoint 2013之前,我们可以 ...

  10. 管理Fragment

    转载原地址:http://blog.csdn.net/harvic880925/article/details/44927375 相关文章: 1.<Fragment详解之一——概述>2.& ...