tf.transpose()的用法
一、tensorflow官方文档内容
transpose(
a,
perm=None,
name='transpose'
)
Defined in tensorflow/python/ops/array_ops.py.
See the guides: Math > Matrix Math Functions, Tensor Transformations > Slicing and Joining
Transposes a. Permutes the dimensions according to perm.
The returned tensor's dimension i will correspond to the input dimension perm[i]. If perm is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors.
For example:
# 'x' is [[1 2 3]
# [4 5 6]]
tf.transpose(x) ==> [[1 4]
[2 5]
[3 6]] # Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
[2 5]
[3 6]] # 'perm' is more useful for n-dimensional tensors, for n > 2
# 'x' is [[[1 2 3]
# [4 5 6]]
# [[7 8 9]
# [10 11 12]]]
# Take the transpose of the matrices in dimension-0
tf.transpose(x, perm=[0, 2, 1]) ==> [[[1 4]
[2 5]
[3 6]] [[7 10]
[8 11]
[9 12]]]
Args:
a: ATensor.perm: A permutation of the dimensions ofa.name: A name for the operation (optional).
Returns:
A transposed Tensor.
二、中文翻译
transpose(
a,
perm=None,
name='transpose'
)
Defined in tensorflow/python/ops/array_ops.py.
See the guides: Math > Matrix Math Functions, Tensor Transformations > Slicing and Joining
a的转置是根据 perm 的设定值来进行的。
返回数组的 dimension(尺寸、维度) i与输入的 perm[i]的维度相一致。如果未给定perm,默认设置为 (n-1...0),这里的 n 值是输入变量的 rank 。因此默认情况下,这个操作执行了一个正规(regular)的2维矩形的转置。
例子:
# 'x' is [[1 2 3]
# [4 5 6]]
tf.transpose(x) ==> [[1 4]
[2 5]
[3 6]] # Equivalently(等价于)
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
[2 5]
[3 6]] # 'perm' is more useful for n-dimensional tensors, for n > 2
# 'x' is [[[1 2 3]
# [4 5 6]]
# [[7 8 9]
# [10 11 12]]]
# Take the transpose of the matrices in dimension-0
tf.transpose(x, perm=[0, 2, 1]) ==> [[[1 4]
[2 5]
[3 6]] [[7 10]
[8 11]
[9 12]]]
参数:
a: a 是一个张量(Tensor)perm: perm 是 a 维度的置换name:操作的名称(可选).
返回值:
返回的是一个转置的张量。
三、解释
tf.transpose(input, [dimension_1, dimenaion_2,..,dimension_n]):这个函数主要适用于交换输入张量的不同维度用的,如果输入张量是二维,就相当是转置。dimension_n是整数,如果张量是三维,就是用0,1,2来表示。这个列表里的每个数对应相应的维度。如果是[2,1,0],就把输入张量的第三维度和第一维度交换。
tf.transpose()的用法的更多相关文章
- tf.transpose函数的用法讲解
tf.transpose函数中文意思是转置,对于低维度的转置问题,很简单,不想讨论,直接转置就好(大家看下面文档,一看就懂). tf.transpose(a, perm=None, name='tra ...
- TensorFlow tf.app&tf.app.flags用法介绍
TensorFlow tf.app&tf.app.flags用法介绍 TensorFlow tf.app argparse tf.app.flags 下面介绍 tf.app.flags.FL ...
- tf.concat, tf.stack和tf.unstack的用法
tf.concat, tf.stack和tf.unstack的用法 tf.concat相当于numpy中的np.concatenate函数,用于将两个张量在某一个维度(axis)合并起来,例如: a ...
- tf.transpose函数解析
tf.transpose函数解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.transpose(a, perm = None, name = 'transpose') 解释 将a进 ...
- 【转载】 TensorFlow tf.app&tf.app.flags用法介绍
作 者:marsggbo 出 处:https://www.cnblogs.com/marsggbo版权声明:署名 - 非商业性使用 - 禁止演绎,协议普通文本 | 协议法律文本. ---------- ...
- python numpy的transpose函数用法
#MXNET的N*C*H*W在numpy打印时比较直观#mxnet卷积层# 输入数据格式是:batch * inchannel * height * width# 输出数据格式是:batch * ou ...
- TensorFlow tf.gradients的用法详细解析以及具体例子
tf.gradients 官方定义: tf.gradients( ys, xs, grad_ys=None, name='gradients', stop_gradients=None, ) Cons ...
- tf.cast()的用法(转)
一.函数 tf.cast() cast( x, dtype, name=None ) 将x的数据格式转化成dtype.例如,原来x的数据格式是bool, 那么将其转化成float以后,就能够将其转化成 ...
- tf.truncated_normal的用法
tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差.这个函数产生正太分布,均值和标准差自己设定.这是 ...
随机推荐
- lambda正则化参数的大小影响
当lambda的值很小时,其惩罚项值不大,还是会出现过拟合现象,当时lambda的值逐渐调大的时候,过拟合现象的程度越来越低,但是当labmda的值超过一个阈值时,就会出现欠拟合现象,因为其惩罚项太大 ...
- python + Jquery,抓取西东网上的Java教程资源网址
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2018-06-15 14:01:45 # @Author : Chenjun (320 ...
- 网络文件系统NFS
NFS介绍 什么是NFS? NFS是Network File System的缩写,即网络文件系统.它的主要功能是通过网络(一般是局域网)让不同的主机系统之间可以共享文件或目录.NFS客户端(一般为应用 ...
- C#删除文件夹以及删除文件
public static void DelectDir(string srcPath) { try { DirectoryInfo dir = new DirectoryInfo(srcPath); ...
- 394. Decode String 解码icc字符串3[i2[c]]
[抄题]: Given an encoded string, return it's decoded string. The encoding rule is: k[encoded_string], ...
- boost的下载和安装(windows版)
1 简介 boost是一个准C++标准库,相当于STL的延续和扩充,它的设计理念和STL比较接近,都是利用泛型让复用达到最大化. boost主要包含以下几个大类: 字符串及文本处理.容器.迭代器(it ...
- JQuery复习心得
this === event.currentTarget event.stopPropagation 阻止冒泡 http:www.css88.com JQ和原生JS入口函数的区别: 书写个数 ...
- boost asio 学习(五) 错误处理
http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting-started-with-boostasio?pg=6 5. Erro ...
- Python开发——3.基本数据类型之列表、元组和字典
一.列表(list) 1.列表的格式 li = [11,22,"kobe",["lakers","ball",11],(11,22,),{& ...
- Alpha冲刺 - (8/10)
Part.1 开篇 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Part.2 成员汇报 组员1(组长)柯奇豪 过去两天完成了哪些任务 进一步优化代码,结合自己负责的部分修 ...