Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships

2018-09-07 20:38:10

pdf: http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf

code:http://vipl.ict.ac.cn/view_database.php?id=6

Introduction:

本文在物体检测尝试结合场景信息,以及 物体之间的关系 来进一步的提升检测结果。

文章的流程如下所示:

大致过程可以表达为:

1. 首先利用 RPN 进行 proposal 的提取;

2. 将整幅图像的 feature 传入到 fc layer 中,得到对应的 scene 的 feature;

3. 利用 roi pooling, 得到 proposal 对应的 feature map,然后传入到 fc 中,得到向量化的 feature;

4. 利用不同 proposals 之间的空间关系,来学习 edges 的信息;

5. 将上述信息分别传入到 scene GRU 以及 edge GRU 中,得到增强之后的 feature,然后进行 BBox 的分类及回归;

其中关于 GRU 的介绍如下所示:

该网络中的 structure inference 部分为:

对于每一个 proposal,我们这里看到上图中的 vi, 那么该 proposal 的 feature 为:fiv,给定 scene 的 feature,那么将这两个信息输入到 scene GRU中,得到基于场景的 feature;

将不同 proposal 之间的关系,建模到模型中,那么:

根据空间位置信息,得到 R;

然后根据 R,我们可以得到 e,然后就可以进行 max-pooling,然后得到 m;

将该信息传到 edge GRU,得到 hidden state;

然后将 scene GRU 以及 edge GRU,得到的状态,在进行结合:

==

论文笔记:Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships的更多相关文章

  1. 论文阅读笔记七:Structure Inference Network:Object Detection Using Scene-Level Context and Instance-Level Relationships(CVPR2018)

    结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong ...

  2. 论文笔记--PCN:Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks

    关键词:rotation-invariant face detection, rotation-in-plane, coarse-to-fine 核心概括:该篇文章为中科院计算所智能信息处理重点实验室 ...

  3. 论文笔记:Fast Online Object Tracking and Segmentation: A Unifying Approach

    Fast Online Object Tracking and Segmentation: A Unifying Approach CVPR-2019 2019-03-11 23:45:12 Pape ...

  4. 论文笔记之:Multiple Object Recognition With Visual Attention

     Multiple Object Recognition With Visual Attention Google DeepMind  ICRL 2015 本文提出了一种基于 attention 的用 ...

  5. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  6. 论文笔记:Capsules for Object Segmentation

    Capsules for Object Segmentation 2018-04-16  21:49:14 Introduction: ----

  7. 论文阅读 | ExtremeNet:Bottom-up Object Detection by Grouping Extreme and Center Points

    相关链接 论文地址:https://arxiv.org/abs/1901.08043 论文代码:https://github.com/xingyizhou/ExtremeNet 概述 ExtremeN ...

  8. 目标检测 | RetinaNet:Focal Loss for Dense Object Detection

    论文分析了one-stage网络训练存在的类别不平衡问题,提出能根据loss大小自动调节权重的focal loss,使得模型的训练更专注于困难样本.同时,基于FPN设计了RetinaNet,在精度和速 ...

  9. 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...

随机推荐

  1. 使用jmeter 进行http 接口测试

    前言: 本文主要针对http接口进行测试,使用Jmeter工具实现. Jmter工具设计之初是用于做性能测试的,它在实现对各种接口的调用方面已经做的比较成熟,因此,本次直接使用Jmeter工具来完成对 ...

  2. 深入解析HashMap、HashTable

    集合类之番外篇:深入解析HashMap.HashTable Java集合类是个非常重要的知识点,HashMap.HashTable.ConcurrentHashMap等算是集合类中的重点,可谓“重中之 ...

  3. JAVA SE ------------------- 项目的菜单输入

    //写一个工具类,进行输入选项数值的获取public class InputUtil { static Scanner sc=new Scanner(System.in); public static ...

  4. Linux re

    正则表达式并不是一个工具程序,而是一个字符串处理的标准依据,如果想要以正则表达式的方式处理字符串,就得使用支持正则表达式的工具,例如grep.vi.sed.asw等. 注意:ls不支持正则表达式. g ...

  5. UCloud首尔机房整体热迁移是这样炼成的

    小结: 1.把两个机房在逻辑上变成一个机房: 2.新老机房的后端服务使用同一套 ZooKeeper,但是配置的却是不同的 IP: 3.UCloud内部服务所使用的数据库服务为MySQL, 内部MySQ ...

  6. 1、js比较日期的大小

    ① html <div class="ptb10"><span>共享开始时间:</span><input type="text& ...

  7. java框架之Spring(5)-注解驱动开发

    准备 1.使用 maven 创建一个 java 项目,依赖如下: <dependency> <groupId>org.springframework</groupId&g ...

  8. safari手机浏览器的width:100%的自适应问题

    Tips: 调试 iPad 或 iPhone 可在设置中启动调试模式,在 Mac 中的 Safari 浏览器 同样开启开发者模式后,进行联机调试.功能彪悍. 最近在做一个页面时,发现在 iPad 的 ...

  9. openshift 容器云从入门到崩溃之四《配置用户验证》

    1.配置本地用户 之前安装的时候选择了htpasswd验证方式 先创建用户 # htpasswd -c /etc/origin/master/htpasswd admin 授权为集群管理员 # oc ...

  10. 这5个实用技巧,教你设计出更好的App

    三年前,谷歌公司分享了一项研究:用户平均会安装36个app在手机上,但每天都使用的只有9个.据统计,只有4%的app会被使用一年以上. 所以,能运用基本用户体验设计原则来设计出更好的app,对公司大有 ...