#6074. 「2017 山东一轮集训 Day6」子序列

分析:

  首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j。于是有转移方程:

$$ f_{i,j}= \begin{cases} f_{i-1,j}&,j\neq S_i\\ \sum_{k=1}^{m+1}f_{i-1,k}&,j=S_i \end{cases} $$

  表示如果当前j不是s[i]的话,最靠后的结尾的j还是那个位置,从i-1转移即可,否则,最靠后的s[i]变成i这个位置,于是加上前面所有最靠后出现的字符即可(即从i往前走到k,如果s[k]在k+1~i之间没有s[k]了,就加上)。

  这个dp还有一个形象的解释:每个i向它后面第一个出现的字符连有向边(即如果i->j有边,那么i+1~j之间没有s[[j]),然后DAG上的路径数就是答案。

  然后可以对每个位置求一个$10 \times 10$的转移矩阵$A_i$,$F_i$是一个$10 \times 1$的矩阵,有$F_i = A_i \times F_{i - 1}$。

  于是可以分别维护矩阵的前缀积,和逆矩阵的前缀积。

  然后复杂度可以做到$nc^3+qc^2$,由于这个矩阵的性质,可以$nc^2$预处理,所以可以做到$nc^2+qc^2$,至于如何做到$nc+qc$,可以看这

代码:

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<bitset>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = 1e9 + ;
struct Matrix{ int a[][]; Matrix() { memset(a, , sizeof(a)); } } s1[N], s2[N];
char str[N];
int s[N], tmp[]; inline void add(int &x,int y) { x += y; if (x >= mod) x -= mod; }
inline void sub(int &x,int y) { x -= y; if (x < ) x += mod; }
void init(int n) {
for (int i = ; i < ; ++i) s1[].a[i][i] = s2[].a[i][i] = ;
for (int i = ; i < ; ++i) s1[].a[i][i] = ;
for (int i = ; i < ; ++i) s1[].a[s[]][i] = ;
for (int i = ; i <= n; ++i) {
s1[i] = s1[i - ];
for (int j = ; j < ; ++j) tmp[j] = ;
for (int j = ; j < ; ++j)
for (int k = ; k < ; ++k) add(tmp[j], s1[i - ].a[k][j]);
for (int j = ; j < ; ++j) s1[i].a[s[i]][j] = tmp[j];
}
for (int i = ; i < ; ++i) s2[].a[s[]][i] = mod - ;
for (int i = ; i < ; ++i) s2[].a[i][i] = ;
for (int i = ; i <= n; ++i) {
s2[i] = s2[i - ];
for (int j = ; j < ; ++j) for (int k = ; k < ; ++k) if (k != s[i]) sub(s2[i].a[j][k], s2[i - ].a[j][s[i]]);
}
}
int main() {
scanf("%s", str + );
int n = strlen(str + );
for (int i = ; i <= n; ++i) s[i] = str[i] - 'a';
init(n);
for (int m = read(); m --; ) {
int l = read(), r = read();
for (int i = ; i < ; ++i) tmp[i] = ;
for (int i = ; i < ; ++i) add(tmp[i], s2[l - ].a[i][]);
int sum = ;
for (int i = ; i < ; ++i)
for (int j = ; j < ; ++j)
add(sum, 1ll * s1[r].a[i][j] * tmp[j] % mod);
cout << (sum - + mod) % mod << "\n";
}
return ;
}

LOJ #6074. 「2017 山东一轮集训 Day6」子序列的更多相关文章

  1. loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)

    题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...

  2. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  3. LOJ#6075. 「2017 山东一轮集训 Day6」重建

    题目描述: 给定一个 n个点m 条边的带权无向连通图 ,以及一个大小为k 的关键点集合S .有个人要从点s走到点t,现在可以对所有边加上一个非负整数a,问最大的a,使得加上a后,满足:s到t的最短路长 ...

  4. 「2017 山东一轮集训 Day6」子序列(矩阵快速幂)

    /* 找出了一个dp式子 是否能够倍增优化 我推的矩阵不太一样 是 1 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 2 求得逆矩阵大概就是 1 0 0 ...

  5. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  6. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

  7. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  8. loj #6077. 「2017 山东一轮集训 Day7」逆序对

    #6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...

  9. LOJ #6119. 「2017 山东二轮集训 Day7」国王

    Description 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当 ...

随机推荐

  1. beego+vue.js分离开发,结合发布,简单部署

    大家知道,golang开发的东西部署简单是它很大的卖点,一般的应用,生成的可执行文件直接放服务器上运行即可,不需要任何环境.当然,大型的应用才需要比如mysql,nginx等. 但是当vue.js出现 ...

  2. Runtime消息动态解析与转发流程

    先上图: 下面根据具体代码看这张图. 一.创建一个Person类, Person.h #import <Foundation/Foundation.h> @interface Person ...

  3. [20171113]修改表结构删除列相关问题2.txt

    [20171113]修改表结构删除列相关问题2.txt --//测试看看修改表结构删除列产生的redo向量,对这些操作细节不了解,分析redo看看. 1.环境:SCOTT@book> @ &am ...

  4. MySQL安全模式:sql_safe_updates讲解

    什么是安全模式 在mysql中,如果在update和delete没有加上where条件,数据将会全部修改.不只是初识mysql的开发者会遇到这个问题,工作有一定经验的工程师难免也会忘记写入where条 ...

  5. zabbix实现微信告警配置

    zabbix设置微信报警的配置过程 zabbix的报警方式有很多,在这里我们来详细说明一下如何通过微信报警 微信企业号的申请 注册的地址https://qy.weixin.qq.com/  这样企业就 ...

  6. January 02nd, 2018 Week 01st Tuesday

    I dream my painting, and then I paint my dream. 我梦见我的画,然后我画我的梦. It was a long time after I had a goo ...

  7. 计算机基础-CPU

    CPU(Central Processing Unit中央处理器)由运算器和控制器组成--微机性能的集成度最高的核心部件 1.金属触点 2.附带散热器 风冷式 热管散热式 水冷式等 扣具结构要和CPU ...

  8. Win10上启动UICrawler自动遍历时报 "org.openqa.selenium.WebDriverException: An unknown server-side error occur red while processing the command. Original error: Could not sign with default certifi cate."

    操作步骤: 1.直接启动 Appium (我用的是 version 1.10.0) 2.打开命令窗口,切换到 UICrawler 所在路径 3.执行命令 java -jar UICrawler-2.2 ...

  9. java按行和列进行输出数据

    package debug; public class Demo9 { public static void main(String[] args) { //输出4行5列星星 //外循环控制行数 // ...

  10. GUI_文件管理器(练习)

    实现想windows下的文件管理器(主要是监听器里的方法,showDir()写法) package com.mywindow.test; import java.awt.event.ActionEve ...