转载:

https://www.jianshu.com/p/dcec3f07d3b5

https://blog.csdn.net/dream_catcher_10/article/details/48522339

重要:https://blog.csdn.net/roslei/article/details/61912618

长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题。

长短时记忆网络的思路:

原始 RNN 的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。再增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。

把上图按照时间维度展开:

  在 t 时刻,LSTM 的输入有三个:当前时刻网络的输入值 x_t、上一时刻 LSTM 的输出值 h_t-1、以及上一时刻的单元状态 c_t-1;LSTM 的输出有两个:当前时刻 LSTM 输出值 h_t、和当前时刻的单元状态 c_t.

关键问题是:怎样控制长期状态 c ?

方法是:使用三个控制开关

第一个开关,负责控制继续保存长期状态c;
第二个开关,负责控制把即时状态输入到长期状态c;
第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。

如何在算法中实现这三个开关?

方法:用 门(gate)

定义:gate 实际上就是一层全连接层,输入是一个向量,输出是一个 0到1 之间的实数向量。
公式为:

gate 如何进行控制?

方法:用门的输出向量按元素乘以我们需要控制的那个向量
原理:门的输出是 0到1 之间的实数向量,当门输出为 0 时,任何向量与之相乘都会得到 0 向量,这就相当于什么都不能通过;输出为 1 时,任何向量与之相乘都不会有任何改变,这就相当于什么都可以通过。

LSTM 前向计算

一共有 6 个公式

遗忘门(forget gate)
它决定了上一时刻的单元状态 c_t-1 有多少保留到当前时刻 c_t

输入门(input gate)
它决定了当前时刻网络的输入 x_t 有多少保存到单元状态 c_t

输出门(output gate)
控制单元状态 c_t 有多少输出到 LSTM 的当前输出值 h_t

遗忘门的计算为:

 
forget

遗忘门的计算公式中:
W_f 是遗忘门的权重矩阵,[h_t-1, x_t] 表示把两个向量连接成一个更长的向量,b_f 是遗忘门的偏置项,σ 是 sigmoid 函数。


输入门的计算:

 
input

根据上一次的输出和本次输入来计算当前输入的单元状态:

 
当前输入的单元状态c_t

当前时刻的单元状态 c_t 的计算:由上一次的单元状态 c_t-1 按元素乘以遗忘门 f_t,再用当前输入的单元状态 c_t 按元素乘以输入门 i_t,再将两个积加和:这样,就可以把当前的记忆 c_t 和长期的记忆 c_t-1 组合在一起,形成了新的单元状态 c_t。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。

 
当前时刻的单元状态c_t

输出门的计算:

 

长短记忆神经网络LSTM的更多相关文章

  1. TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  2. deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  3. 十 | 门控循环神经网络LSTM与GRU(附python演练)

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) ...

  4. 循环神经网络LSTM RNN回归:sin曲线预测

    摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]& ...

  5. 3. RNN神经网络-LSTM模型结构

    1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 之前我们对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数 ...

  6. 循环神经网络RNN模型和长短时记忆系统LSTM

    传统DNN或者CNN无法对时间序列上的变化进行建模,即当前的预测只跟当前的输入样本相关,无法建立在时间或者先后顺序上出现在当前样本之前或者之后的样本之间的联系.实际的很多场景中,样本出现的时间顺序非常 ...

  7. 循环神经网络-LSTM进阶

    基础的LSTM模型,单隐层,隐层单神经元,而实际中一般需要更为复杂的网络结构, 下面借用手写数字的经典案例构造比较复杂的LSTM模型,并用代码实现. 单隐层,隐层多神经元 # -*- coding:u ...

  8. 循环神经网络-LSTM

    LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件. LSTM能够很大程度上缓解长期依赖的问题. ...

  9. Pytorch循环神经网络LSTM时间序列预测风速

    #时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大 ...

随机推荐

  1. UVa 11627 - Slalom 二分. oj错误题目 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  2. springcloud学习总结

    最近花了一周的时间对springcloud的常用组件进行了一些入门级的了解,也破天荒的积极起来用博客进行了学习的记录,只是希望以后用的时候能对自己有所帮助,也希望给跟我一样对springcloud毫无 ...

  3. 简述servlet

    什么是Servlet? Servlet是一种动态的web开发技术,本质就是一个运行在服务端的Java小程序,负责处理业务逻辑,生成动态web内容. 编写一个servlet步骤: 1.编写一个类  继承 ...

  4. C++内存管理-new,delete,new[],placement new的简单使用

    技术在于交流.沟通,本文为博主原创文章转载请注明出处并保持作品的完整性 首先,我们先看一下C++应用程序,使用memory的途径如下图所示 C++应用程序中申请内存基于分配器的实现(std::allo ...

  5. Costura.Fody合并DLL和EXE

    1.打开Nuget包管理器 2. 输入 Install-Package Costura.Fody -Version 3.3.0 3.之后Costura.Fody会嵌入到工程中,如果没有手动添加一下 4 ...

  6. opcode cache与JIT的区别

    要说明opcode cache与JIT的区别,得先明白,字节码,又叫中间码与机器码的区别. 操作码(opcode) 一条机器指令.比如我们汇编语言写的一条操作语句. 机器码(machine code) ...

  7. vscode 完全支持zeng code的写法

    一.快速编写HTML代码 1.  初始化 HTML文档需要包含一些固定的标签,比如<html>.<head>.<body>等,现在你只需要1秒钟就可以输入这些标签. ...

  8. C语言gcc处理过程

    gcc编译C文件一共四步,预处理(Preprocess),编译(Compilation),汇编(Assembly)和链接(Linking) 1. 预处理(Preprocess) 预处理是预处理中会展开 ...

  9. 使用Ajax+jQuery来实现前端收到的数据在console上显示+简单的主页设计与bootstrap插件实现图片轮播

    1.实现前端输入的数据在console上显示 上一篇是解决了在前端的输入信息在cygwin上显示,这次要给前台们能看见的数据,因为数据库里插入的数据少,所以写的语句翻来覆去就那几个词,emmm···当 ...

  10. enctype="multipart/form-data"表单传值问题

    问题: form表单的enctype设置为multipart/form-data后,表单中除了文件后台能拿到,其他值后台都拿不到. 知识点: 一.application/x-www-form-urle ...