BZOJ

洛谷

\(Description\)

给定\(n,m,c\)。\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过。棋盘的每个格子有三种状态。

\(n\leq 100,m\leq 12,c\leq 6,Q\leq 5\)。

\(Solution\)

模板串只有\(2\)行,把它拆成两个串,考虑轮廓线DP。

对于\((i,j)\)这个格子,只需要考虑\((i-1,j)\)是否匹配了模式串的第一行,\((i,j)\)匹配到模式串第二行的哪。

所以令\(f[i][j][S][x][y]\)表示,当前为\((i,j)\),\(i-1\)行匹配了模式串第一行的位置状态为\(S\)(\(S\)第\(k\)位为\(1\)说明\((i-1,k)\)匹配了第一行),第\(i\)行匹配到模式串第一行的位置\(x\),匹配到第二行\(y\)。

转移时枚举三种字符,用KMP预处理会跳到哪一位。

复杂度\(O(n*m*2^{m-c+1}*c^2)\)(\(S\)只需记\(m-c+1\)位)。

//2392kb	792ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
const int N=13;
const LL LIM=(LL)1e18; int f[2][(1<<12)+1][7][7]; struct KMP
{
int s[N],fail[N],to[N][3];
char tmp[N];
void Build(const int n)
{
scanf("%s",tmp+1);
for(int i=1; i<=n; ++i) s[i]=tmp[i]=='W'?0:(tmp[i]=='B'?1:2);
for(int i=2,j=0; i<=n; ++i)
{
while(j && s[i]!=s[j+1]) j=fail[j];
fail[i]=s[i]==s[j+1]?++j:0;
}
s[n+1]=233;
for(int i=0; i<=n; ++i)
for(int c=0; c<3; ++c)
{
int j=i;
while(j && s[j+1]!=c) j=fail[j];
to[i][c]=s[j+1]==c?j+1:0;
}
}
}s1,s2; inline void Clear(int (*f)[7][7],const int lim,const int C)
{
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b) f[s][a][b]=0;
} int main()
{
int n,m,C,Q; scanf("%d%d%d%d",&n,&m,&C,&Q);
int lim=(1<<m-C+1)-1; LL pw3=1;
for(int i=n*m; i; --i) pw3=3ll*pw3, pw3>=LIM&&(pw3%=mod);
pw3%=mod; while(Q--)
{
s1.Build(C), s2.Build(C);
int p=0; memset(f[p],0,sizeof f[p]);
f[p][0][0][0]=1;
for(int i=1; i<=n; ++i)
{
Clear(f[p^1],lim,C);// memset(f[p^1],0,sizeof f[p^1]);//状态少啊
for(int s=0; s<=lim; ++s)
{
LL tmp=0;
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b)
tmp+=f[p][s][a][b];
f[p^1][s][0][0]=tmp%mod;
}
p^=1;
for(int j=1; j<=m; ++j)
{
p^=1, Clear(f[p],lim,C);// memset(f[p],0,sizeof f[p]);
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0,v; b<=C; ++b)
if((v=f[p^1][s][a][b]))
for(int c=0; c<3; ++c)
{
int ta=s1.to[a][c],tb=s2.to[b][c];
if(j<C) Add(f[p][s][ta][tb],v);
else if(!(s>>j-C&1))
if(ta!=C) Add(f[p][s][ta][tb],v);
else Add(f[p][s|(1<<j-C)][ta][tb],v);
else if(tb!=C)
if(ta!=C) Add(f[p][s^(1<<j-C)][ta][tb],v);
else Add(f[p][s][ta][tb],v);
}
}
}
LL ans=0;
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b) ans+=f[p][s][a][b];
printf("%d\n",(int)((pw3+mod-ans%mod)%mod));
}
return 0;
}

BZOJ.4572.[SCOI2016]围棋(轮廓线DP)的更多相关文章

  1. 4572: [Scoi2016]围棋 轮廓线DP KMP

    国际惯例的题面:这种题目显然DP了,看到M这么小显然要状压.然后就是具体怎么DP的问题.首先我们可以暴力状压上一行状态,然后逐行转移.复杂度n*3^m+3^(m*2),显然过不去. 考虑状态的特殊性, ...

  2. [LOJ#2017][轮廓线DP][KMP]「SCOI2016」围棋

    题目传送门 看到 \(m\le 12\) 和 \(c\le 6\) ,容易想到状压 DP 考虑转化成 \(3^{nm}\) 减去不合法的方案数,轮廓线 DP :\(f[i][j][S][k][h]\) ...

  3. 轮廓线DP POJ3254 && BZOJ 1087

    补了一发轮廓线DP,发现完全没有必要从右往左设置状态,自然一点: 5 6 7 8 9 1 2 3 4 如此设置轮廓线标号,转移的时候直接把当前j位改成0或者1就行了.注意多记录些信息对简化代码是很有帮 ...

  4. 【BZOJ 4572】【SCOI 2016】围棋

    http://www.lydsy.com/JudgeOnline/problem.php?id=4572 轮廓线DP:设\(f(i,j,S,x,y)\). \(S\)表示\((i,1)\)到\((i, ...

  5. BZOJ4572: [Scoi2016]围棋

    Description 近日,谷歌研发的围棋AI—AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑. 与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积 ...

  6. [SCOI2016]围棋

    Description 近日,谷歌研发的围棋AI-AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑.与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积神 ...

  7. HDU4804 Campus Design 轮廓线dp

    跟上面那篇轮廓线dp是一样的,但是多了两个条件,一个是在原图上可能有些点是不能放的(即障碍),所以转移的时候要多一个判断color[i][j]是不是等于1什么的,另外一个是我们可以有多的1*1的骨牌, ...

  8. POJ2411 Mondriaan's Dream 轮廓线dp

    第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...

  9. UVA - 11270 轮廓线DP

    其实这题还能用状压DP解决,可是时间达到2000ms只能过掉POJ2411.状压DP解法详见状压DP解POJ2411 贴上POJ2411AC代码 : 2000ms 时间复杂度h*w*(2^w)*(2^ ...

随机推荐

  1. bzoj 1042

    典型的背包+容斥 首先,考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可 接下来,如果有个数的限制,那么我们就要利用一些容斥的思想:没有1个超过限制的方 ...

  2. 性能测试四十九:ngrinder压测平台

    下载地址:https://sourceforge.net/projects/ngrinder/files/ ngrinder工作原理:这里的controller就是ngrinder平台 部署(以win ...

  3. mybatis的插件分析

    mybatis插件回在解析配置是通过pluginAll方法将插件添加到插件链中,然后会在sqlSessionfactory.openSession()方法中将插件链绑到executor上,在执行sql ...

  4. 正则re模块

    正则表达式的特殊字符: 语法: re.match(正则语法,字符串) # re.match() 为关键字 group(1) # 取出第一个匹配 括号中的值,1位第一个括号内的值 1. 特殊字符 1 . ...

  5. 20165323 预备作业3 Linux安装及学习

    一.Linux安装 首先我按照老师所给的步骤下载了VirtualBox 5.2.6和Ubuntu 16.04.3.有流程下载很简单,但是在下载的过程中还是出现了一些问题. 1.VirtualBox 只 ...

  6. ***在Linux环境下mysql的root密码忘记解决方法(三种)-推荐第三种

    MySQL密码的恢复方法之一 1.首先确认服务器出于安全的状态,也就是没有人能够任意地连接MySQL数据库. 因为在重新设置MySQL的root密码的期间,MySQL数据库完全出于没有密码保护的 状态 ...

  7. gcc make 与cmake

    1. gcc (1)是什么? 它是GNU Compiler Collection(就是GNU编译器套件),也可以简单认为是编译器.它可以编译很多种编程语言(括C.C++.Objective-C.For ...

  8. @+id/和android:id有什么区别?

    Any View object may have an integer ID associated with it, to uniquely identify the View within the ...

  9. ifconf家族命令

    1  ifconfig 命令: ifconfig 命令用来查看和配置网络设备.当网络环境发生改变时可通过此命令对网络进行相应的配置. 查看: ifconfig : 显示正在激活中的网卡 ifconfi ...

  10. phpmyadmin详细的图文使用教程

    做网站用到服务器有很多站长应该都会用到数据库,那么phpmyadmin的使用也会是很多新手站长头大的问题,下面小编详细介绍一下phpmyadmin详细的图文使用教程. 方法/步骤     如何进入ph ...