BZOJ

洛谷

\(Description\)

给定\(n,m,c\)。\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过。棋盘的每个格子有三种状态。

\(n\leq 100,m\leq 12,c\leq 6,Q\leq 5\)。

\(Solution\)

模板串只有\(2\)行,把它拆成两个串,考虑轮廓线DP。

对于\((i,j)\)这个格子,只需要考虑\((i-1,j)\)是否匹配了模式串的第一行,\((i,j)\)匹配到模式串第二行的哪。

所以令\(f[i][j][S][x][y]\)表示,当前为\((i,j)\),\(i-1\)行匹配了模式串第一行的位置状态为\(S\)(\(S\)第\(k\)位为\(1\)说明\((i-1,k)\)匹配了第一行),第\(i\)行匹配到模式串第一行的位置\(x\),匹配到第二行\(y\)。

转移时枚举三种字符,用KMP预处理会跳到哪一位。

复杂度\(O(n*m*2^{m-c+1}*c^2)\)(\(S\)只需记\(m-c+1\)位)。

//2392kb	792ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
const int N=13;
const LL LIM=(LL)1e18; int f[2][(1<<12)+1][7][7]; struct KMP
{
int s[N],fail[N],to[N][3];
char tmp[N];
void Build(const int n)
{
scanf("%s",tmp+1);
for(int i=1; i<=n; ++i) s[i]=tmp[i]=='W'?0:(tmp[i]=='B'?1:2);
for(int i=2,j=0; i<=n; ++i)
{
while(j && s[i]!=s[j+1]) j=fail[j];
fail[i]=s[i]==s[j+1]?++j:0;
}
s[n+1]=233;
for(int i=0; i<=n; ++i)
for(int c=0; c<3; ++c)
{
int j=i;
while(j && s[j+1]!=c) j=fail[j];
to[i][c]=s[j+1]==c?j+1:0;
}
}
}s1,s2; inline void Clear(int (*f)[7][7],const int lim,const int C)
{
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b) f[s][a][b]=0;
} int main()
{
int n,m,C,Q; scanf("%d%d%d%d",&n,&m,&C,&Q);
int lim=(1<<m-C+1)-1; LL pw3=1;
for(int i=n*m; i; --i) pw3=3ll*pw3, pw3>=LIM&&(pw3%=mod);
pw3%=mod; while(Q--)
{
s1.Build(C), s2.Build(C);
int p=0; memset(f[p],0,sizeof f[p]);
f[p][0][0][0]=1;
for(int i=1; i<=n; ++i)
{
Clear(f[p^1],lim,C);// memset(f[p^1],0,sizeof f[p^1]);//状态少啊
for(int s=0; s<=lim; ++s)
{
LL tmp=0;
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b)
tmp+=f[p][s][a][b];
f[p^1][s][0][0]=tmp%mod;
}
p^=1;
for(int j=1; j<=m; ++j)
{
p^=1, Clear(f[p],lim,C);// memset(f[p],0,sizeof f[p]);
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0,v; b<=C; ++b)
if((v=f[p^1][s][a][b]))
for(int c=0; c<3; ++c)
{
int ta=s1.to[a][c],tb=s2.to[b][c];
if(j<C) Add(f[p][s][ta][tb],v);
else if(!(s>>j-C&1))
if(ta!=C) Add(f[p][s][ta][tb],v);
else Add(f[p][s|(1<<j-C)][ta][tb],v);
else if(tb!=C)
if(ta!=C) Add(f[p][s^(1<<j-C)][ta][tb],v);
else Add(f[p][s][ta][tb],v);
}
}
}
LL ans=0;
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b) ans+=f[p][s][a][b];
printf("%d\n",(int)((pw3+mod-ans%mod)%mod));
}
return 0;
}

BZOJ.4572.[SCOI2016]围棋(轮廓线DP)的更多相关文章

  1. 4572: [Scoi2016]围棋 轮廓线DP KMP

    国际惯例的题面:这种题目显然DP了,看到M这么小显然要状压.然后就是具体怎么DP的问题.首先我们可以暴力状压上一行状态,然后逐行转移.复杂度n*3^m+3^(m*2),显然过不去. 考虑状态的特殊性, ...

  2. [LOJ#2017][轮廓线DP][KMP]「SCOI2016」围棋

    题目传送门 看到 \(m\le 12\) 和 \(c\le 6\) ,容易想到状压 DP 考虑转化成 \(3^{nm}\) 减去不合法的方案数,轮廓线 DP :\(f[i][j][S][k][h]\) ...

  3. 轮廓线DP POJ3254 && BZOJ 1087

    补了一发轮廓线DP,发现完全没有必要从右往左设置状态,自然一点: 5 6 7 8 9 1 2 3 4 如此设置轮廓线标号,转移的时候直接把当前j位改成0或者1就行了.注意多记录些信息对简化代码是很有帮 ...

  4. 【BZOJ 4572】【SCOI 2016】围棋

    http://www.lydsy.com/JudgeOnline/problem.php?id=4572 轮廓线DP:设\(f(i,j,S,x,y)\). \(S\)表示\((i,1)\)到\((i, ...

  5. BZOJ4572: [Scoi2016]围棋

    Description 近日,谷歌研发的围棋AI—AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑. 与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积 ...

  6. [SCOI2016]围棋

    Description 近日,谷歌研发的围棋AI-AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑.与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积神 ...

  7. HDU4804 Campus Design 轮廓线dp

    跟上面那篇轮廓线dp是一样的,但是多了两个条件,一个是在原图上可能有些点是不能放的(即障碍),所以转移的时候要多一个判断color[i][j]是不是等于1什么的,另外一个是我们可以有多的1*1的骨牌, ...

  8. POJ2411 Mondriaan's Dream 轮廓线dp

    第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...

  9. UVA - 11270 轮廓线DP

    其实这题还能用状压DP解决,可是时间达到2000ms只能过掉POJ2411.状压DP解法详见状压DP解POJ2411 贴上POJ2411AC代码 : 2000ms 时间复杂度h*w*(2^w)*(2^ ...

随机推荐

  1. bzoj 2761

    神题... 其实这题巨水,用各种诡异的方法都能A,包括STL等等 我之所以写题解,是因为我发现了一个bug:bz和luogu时限有问题! 这题我用了两种做法: ①:直接使用STL-map(不能直接用数 ...

  2. Distance

    1191: Distance 时间限制: 1 Sec  内存限制: 32 MB 题目描述 There is a battle field. It is a square with the side l ...

  3. Java 单字节、多字节读取文本文档中的内容

    文本文档位于工程下. 鼠标右击工程,选择“new - File”,即可创建. 文本文档的格式:GBK 单字节读取 import java.io.File; import java.io.FileInp ...

  4. 停止Monkey

    adb shell top | grep monkey adb shell kill id

  5. 论文阅读笔记十八:ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation(CVPR2016)

    论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet ...

  6. MVC Filter

    一.Filter在MVC生命周期中的位置 1.IIS中传递请求到程序2.MVC根据Routing来选择由哪个Controller/Action来处理3.Controller调用Model(业务逻辑)来 ...

  7. (原创)C# 压缩解压那些事儿

    吐槽: 搜狗推广API的报告服务太坑爹了!!! 搜狗推广API的报告服务太坑爹了!!! 搜狗推广API的报告服务太坑爹了!!! 搜狗的太垃圾了,获取下来的压缩包使用正常方式无法解压!!没有专门的API ...

  8. 使用 curses 函数库管理基于文本的屏幕

    curses 函数库提供了终端无关的方式来编写全屏幕的基于字符的程序.curses 还可以管理键盘,提供了一种简单易用的非阻塞字符输入模式. curses 函数库能够优化光标的移动并最小化需要对屏幕进 ...

  9. mysql分组(五)

    MySQL GROUP BY 语句 GROUP BY 语句根据一个或多个列对结果集进行分组. 在分组的列上我们可以使用 COUNT, SUM, AVG,等函数. GROUP BY 语法 SELECT ...

  10. 【Android】setHapticFeedbackEnabled 设置

    使其在触摸的时候没有触感反馈.接着设置长按事件的监听. 代码在:launcher launcher->setupViews方法 // Setup the workspacemWorkspace. ...