Computer

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 30923    Accepted Submission(s): 3861

Problem Description

A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information. 

Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.

 

Input

Input file contains multiple test cases.In each case there is natural number N (N<=10000) in the first line, followed by (N-1) lines with descriptions of computers. i-th line contains two natural numbers - number of computer, to which i-th computer is connected and length of cable used for connection. Total length of cable does not exceed 10^9. Numbers in lines of input are separated by a space.
 

Output

For each case output N lines. i-th line must contain number Si for i-th computer (1<=i<=N).
 

Sample Input

5
1 1
2 1
3 1
1 1
 

Sample Output

3
2
3
4
4
 

Author

scnu
 
题意:问从每个几点出发所到达的最远距离。
思路:两遍dfs,一遍从上往下,一遍从下往上,答案为往上走或往下走的最大值。
 //2017-09-13
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ; int head[N], tot;
struct Edge{
int v, w, next;
}edge[N<<]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v, int w){
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
} //down[u][0]表示u节点往下走的最大距离,down[u][1]表示节点u往下走的次大距离
//up[u]表示节点u往上走的最大距离,son[u]表示u节点往下走的最大距离对应的儿子
int n, down[N][], up[N], son[N]; void dfs1(int u, int fa){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].v, w = edge[i].w;
if(v == fa)continue;
dfs1(v, u);
if(down[v][]+w > down[u][]){//更新最大的情况
down[u][] = down[u][];
down[u][] = down[v][]+w;
son[u] = v;
}else if(down[v][]+w > down[u][])//只更新次大值的情况
down[u][] = down[v][] + w;
}
} void dfs2(int u, int fa){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].v, w = edge[i].w;
if(v == fa)continue;
if(son[u] != v)
up[v] = max(up[u]+w, down[u][]+w);
else
up[v] = max(up[u]+w, down[u][]+w);
dfs2(v, u);
}
} int main()
{
//freopen("inputD.txt", "r", stdin);
while(scanf("%d", &n) != EOF){
init();
int v, w;
for(int i = ; i <= n; i++){
scanf("%d%d", &v, &w);
add_edge(i, v, w);
add_edge(v, i, w);
}
memset(up, , sizeof(up));
memset(down, , sizeof(down));
dfs1(, );
dfs2(, );
for(int i = ; i <= n; i++)
printf("%d\n", max(up[i], down[i][]));
} return ;
}

HDU2196(SummerTrainingDay13-D tree dp)的更多相关文章

  1. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. HDU 4359——Easy Tree DP?——————【dp+组合计数】

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. TYOI Day1 travel:Tree dp【处理重复走边】

    题意: 给你一棵树,n个节点,每条边有长度. 然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值. 题解: 对于无根树上的dp,一般都是先转成以1为根的有根树,然后 ...

  4. HDU 4359 Easy Tree DP?

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  5. DP Intro - Tree DP Examples

    因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下) 基于背包原理的树形DP poj 1947 Rebuilding Roads 题意:给你一棵树 ...

  6. Codeforces 442D Adam and Tree dp (看题解)

    Adam and Tree 感觉非常巧妙的一题.. 如果对于一个已经建立完成的树, 那么我们可以用dp[ i ]表示染完 i 这棵子树, 并给从fa[ i ] -> i的条边也染色的最少颜色数. ...

  7. HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)

    Tree chain problem Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  8. HDU3534(SummerTrainingDay13-C tree dp)

    Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. Partial Tree(DP)

    Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...

随机推荐

  1. openresty 安装

    1.安装环境.版本说明: 操作系统: Centos 6.5 X86_64 openresty 版本: openresty-1.13.6.1.tar.gz 2.安装 openresty(nginx) 需 ...

  2. Win32 CMD批处理命令

    1. win32批处理下,另开一个console执行进程X 使用start [/K|/C],示例: //------------------------------------------------ ...

  3. 优化以及bug

    优化1:节流函数2:城市查询时,之前用事件(拿到DOM中innerHTML,后触发事件),后改用v-model双向绑定:应该是更符合数据驱动.3:使用localstorage等本地存储,如果用户关闭本 ...

  4. Java中List, Integer[], int[]的相互转换

    import java.util.Arrays; import java.util.List; import java.util.stream.Collectors; public class Mai ...

  5. 开源性能测试工具Locust使用篇(二)

    那如何理解Locust和TaskSet这两个类呢? class HttpLocust(Locust) 在Locust类中,具有一个client属性,它对应着虚拟用户作为客户端所具备的请求能力,也就是我 ...

  6. Telerik for AJAX RadGrid控件

    作为一名.net小白,今天分享一下telerik知识的学习.熟悉ASP.NET Web Form的都知道Grid View或者是List View等表格控件,所以今天和大家分享一下telerik Ra ...

  7. USB插入电脑的硬件检测和枚举流程

    USB协议定义了设备的6种状态,仅在枚举过程种,设备就经历了4个状态的迁移:上电状态(Powered),默认状态(Default),地址状态(Address)和配置状态(Configured)(其他两 ...

  8. Java 基础学习总结(一)抽象类和接口

    接触java的时间不是很长,以前对抽象类和接口的定义和区别也是模糊不清,最近拿起学校的教程读了起来,也参阅了网上的博客大神理解和总结,于是决定自己按照自己的理解来总结一下. 抽象类(半成品)   一般 ...

  9. jenkins内部分享ppt

    持续集成Continuous integration简介(持续集成是什么)    .持续集成源于极限编程(XP),是一种软件实践,软件开发过程中集成步骤是一个漫长并且无法预测的过程.集成过程中可能会爆 ...

  10. 获取 BaiduMapSDKDemo SHA1 签名

    用 Android Studio 1.5 运行 BaiduMapsApiASDemo 时,显示 key 验证出错. 原因在于用 keytool -list -keystore debug.keysto ...