【BZOJ1558】等差数列(线段树)

题面

BZOJ

题解

可以说这道题已经非常毒瘤了

怎么考虑询问操作?

如果直接将一段数分解为等差数列?

太麻烦了。。。。

考虑相邻的数做差,

这样等差数列变为了一段连续的相等区间

考虑怎么维护分解一段区间为最少数量的等差数列

事实上,等差数列的第一项不一定要和后面的相等,所以合并的时候要额外考虑

所以,设\(s[0/1/2/3]\)分别表示左右端点是否计算入内

同时维护最左端和最右端的值\(l,r\)

如果没有计算入内,则此时左右端点作为一个等差数列的开头

如果计算入内,则是一样的计算,考虑连续区间

合并的代码如下:

struct Data{int s[4],l,r;};
Data operator+(Data x,Data y)
{
Data c;c.l=x.l,c.r=y.r;
c.s[0]=x.s[2]+y.s[1]-(x.r==y.l);
c.s[0]=min(c.s[0],x.s[0]+y.s[1]);
c.s[0]=min(c.s[0],x.s[2]+y.s[0]);
c.s[1]=x.s[3]+y.s[1]-(x.r==y.l);
c.s[1]=min(c.s[1],x.s[1]+y.s[1]);
c.s[1]=min(c.s[1],x.s[3]+y.s[0]);
c.s[2]=x.s[2]+y.s[3]-(x.r==y.l);
c.s[2]=min(c.s[2],x.s[2]+y.s[2]);
c.s[2]=min(c.s[2],x.s[0]+y.s[3]);
c.s[3]=x.s[3]+y.s[3]-(x.r==y.l);
c.s[3]=min(c.s[3],x.s[3]+y.s[2]);
c.s[3]=min(c.s[3],x.s[1]+y.s[3]);
return c;
}

以\(s[0]\)举例,\(s[0]\)表示的是左右端点都不选

转移如下:

1.可以直接合并左边选右端点,右边选左端点。如果两者的差值相同,则可以将原来的等差数列合并为一个

2.左边两侧都不选,左边的右端点作为一个等差数列的首项,右边就要选择左端点

3.左边选右端点,右边的左端点作为一个等差数列的首项,所以右端点两边都不选

其他的\(s[1/2/3]\)转移同理

至于区间的加法,不过是对查分数组造成两个单点修改,以及一个区间修改的影响

仔细考虑清楚就可以

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define lson (now<<1)
#define rson (now<<1|1)
#define MAX 120000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int V[MAX],n;
struct Data{int s[4],l,r;};
Data operator+(Data x,Data y)
{
Data c;c.l=x.l,c.r=y.r;
c.s[0]=x.s[2]+y.s[1]-(x.r==y.l);
c.s[0]=min(c.s[0],x.s[0]+y.s[1]);
c.s[0]=min(c.s[0],x.s[2]+y.s[0]);
c.s[1]=x.s[3]+y.s[1]-(x.r==y.l);
c.s[1]=min(c.s[1],x.s[1]+y.s[1]);
c.s[1]=min(c.s[1],x.s[3]+y.s[0]);
c.s[2]=x.s[2]+y.s[3]-(x.r==y.l);
c.s[2]=min(c.s[2],x.s[2]+y.s[2]);
c.s[2]=min(c.s[2],x.s[0]+y.s[3]);
c.s[3]=x.s[3]+y.s[3]-(x.r==y.l);
c.s[3]=min(c.s[3],x.s[3]+y.s[2]);
c.s[3]=min(c.s[3],x.s[1]+y.s[3]);
return c;
}
struct Node
{
int l,r,v;
Data x;
}t[MAX<<2];
void pushdown(int now)
{
t[lson].v+=t[now].v;t[rson].v+=t[now].v;
t[lson].x.l+=t[now].v;t[lson].x.r+=t[now].v;
t[rson].x.l+=t[now].v;t[rson].x.r+=t[now].v;
t[now].v=0;
}
void Build(int now,int l,int r)
{
t[now].l=l;t[now].r=r;
if(l==r)
{
t[now].x.s[0]=0;
t[now].x.s[1]=t[now].x.s[2]=t[now].x.s[3]=1;
t[now].x.l=t[now].x.r=V[l];
return;
}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now].x=t[lson].x+t[rson].x;
}
Data Query(int now,int l,int r)
{
if(t[now].l==l&&t[now].r==r)return t[now].x;
pushdown(now);
int mid=(t[now].l+t[now].r)>>1;
if(r<=mid)return Query(lson,l,r);
if(l>mid)return Query(rson,l,r);
return Query(lson,l,mid)+Query(rson,mid+1,r);
}
void Modify(int now,int l,int r,int w)
{
if(t[now].l==l&&t[now].r==r)
{
t[now].v+=w;
t[now].x.l+=w;t[now].x.r+=w;
return;
}
pushdown(now);
int mid=(t[now].l+t[now].r)>>1;
if(r<=mid)Modify(lson,l,r,w);
else if(l>mid)Modify(rson,l,r,w);
else Modify(lson,l,mid,w),Modify(rson,mid+1,r,w);
t[now].x=t[lson].x+t[rson].x;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)V[i]=read();
for(int i=1;i<n;++i)V[i]=V[i+1]-V[i];
Build(1,1,n-1);
int Q=read();
char opt[20];
while(Q--)
{
scanf("%s",opt);
int l=read(),r=read();
if(opt[0]=='B')(l==r)?puts("1"):printf("%d\n",Query(1,l,r-1).s[3]);
else
{
int a=read(),b=read();
if(l!=1)Modify(1,l-1,l-1,a);
if(l!=r)Modify(1,l,r-1,b);
if(r!=n)Modify(1,r,r,-(a+(r-l)*b));
}
}
return 0;
}

【BZOJ1558】等差数列(线段树)的更多相关文章

  1. BZOJ.1558.[JSOI2009]等差数列(线段树 差分)

    BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B ...

  2. [BZOJ4373]算术天才⑨与等差数列(线段树)

    [l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...

  3. 【BZOJ4373】算术天才⑨与等差数列 [线段树]

    算术天才⑨与等差数列 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...

  4. BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)

    mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...

  5. 【BZOJ4373】算术天才⑨与等差数列 线段树+set

    [BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...

  6. BZOJ 4373算术天才⑨与等差数列(线段树)

    题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...

  7. bzoj 4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...

  8. bzoj4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...

  9. BZOJ 4373: 算术天才⑨与等差数列 线段树

    Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能 ...

  10. BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)

    题意 题目链接 Sol 正经做法不会,听lxl讲了一种很神奇的方法 我们考虑如果满足条件,那么需要具备什么条件 设mx为询问区间最大值,mn为询问区间最小值 mx - mn = (r - l) * k ...

随机推荐

  1. 【php增删改查实例】第十七节 - 用户登录(1)

    新建一个login文件,里面存放的就是用户登录的模块. <html> <head> <meta charset="utf-8"> <sty ...

  2. vue 中使用 async/await 将 axios 异步请求同步化处理

    1. axios 常规用法: export default { name: 'Historys', data() { return { totalData: 0, tableData: [] } }, ...

  3. ActiveMQ 填坑记

    前言 MQ是现在大型系统架构中必不可少的一个重要中间件,之前有偏文章<MQ(消息队列)常见的应用场景解析>介绍过MQ的应用场景,现在流行的几个MQ是rabbitmq,rocketma,ka ...

  4. Wechat login authorization(OAuth2.0)

    一.前言 昨天小组开了个会,让我今天实现一个微信网页授权的功能,可以让用户在授权之后无需再次登录既可进入用户授权界面.在这之前我也从没接触过微信公众号开发之类的,也不知道公众号后台是啥样子的,自己所在 ...

  5. Docker容器学习梳理 - Volume数据卷使用

    之前部署了Docker容器学习梳理--基础环境安装,接下来看看Docker Volume的使用. Docker volume使用 Docker中的数据可以存储在类似于虚拟机磁盘的介质中,在Docker ...

  6. kvm虚拟机日常操作命令梳理

    KVM虚拟机的管理主要是通过virsh命令对虚拟机进行管理.废话不多说,下面列出kvm日常管理中的命令 1)查看KVM虚拟机配置文件及运行状态 KVM虚拟机默认配置文件位置: /etc/libvirt ...

  7. Scrum Meeting day 4

                第四次会议 No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 No_11:照片记录 待更新 No_100:代码/文档签入记录 No_101:出席表 ...

  8. NumsCount (java)

    package com.home.test;       import java.util.Arrays;       public class NumsCount {       public vo ...

  9. java感想

    Java学起来很有趣,通过学习Java可以提高自己的逻辑能力.在学习Java期间我们做了一些程序,我们班的同学也都积极准备,完成的还不错!在做程序时,我遇到了一些难题,有时也会出现错误,时间长了弄得我 ...

  10. jsp的自定义标签

    1.相对于JSTL或Spring等第三方标签库而言的,用来实现项目中特定的功能需求. 2.自定义标签基本的组成部分 ①页面上看得见的部分 [1]通过taglib引入标签库 [2]标签本身 ②xxx.t ...