洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)
DP题怕是都要大大的脑洞。。。。。。
首先,时间那么大没用,直接离散化。
第一问还好。根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去。那么我们转移的时候也肯定是要一块一块地转移啦。
设\(tot_{l,r}\)为完全被包含在\(l-r\)时间内活动总数,直接\(O(n^3)\)暴力求就好了。
设\(pre_{i,j}\)为时间\(1-i\)内一边选\(j\)个时,另一边能选的最大值。枚举一块转移的话,我们的方程应该写成这样:
\]
(显然两种情况都要考虑)
然后答案就是\(\max\limits_{j=1}^n\{\min(pre_{m,j},j)\}\)啦(\(m\)为离散化后的时间总长,不会超过\(2n\))
这个数组为什么要叫\(pre\)呢?这是个前缀DP值。为了第二问,我们还要做个后缀DP,\(suf_{i,j}\)表示时间\(i-m\)内一边选\(j\)个时,另一边能选的最大值,跟\(pre\)几乎一样的转移,也是\(O(n^3)\)的。
对于第二问,我们显然可以肯定\(s_i-t_i\)之内的活动都被一边选走了。至于\(s_i\)之前和\(t_i\)以后选了多少,我们也只好枚举。设\(f_{l,r}\)为一边强制选\(l-r\)之间所有活动时最优的最小值,假定这一边在前面选了\(x\)个,在后面选了\(y\)个,另一边最多能选多少也就知道了,有方程
\]
然后第\(i\)个的答案就是\(f_{s_i,t_i}\)么?注意千万别掉入这个误区!\(pre\)和\(suf\)只是保证了局部最优,而没有保证全局最优。要说人话的话,就是可能有一个活动跨过了\(s_i\),然而\(f_{s_i,t_i}\)并没有统计到它,只有扩大强制选的区间使得能够包含它,才能统计到最优解。于是需要枚举强制选区间了,\(ans_i=\max\limits_{l=1}^{s_i}\max\limits_{r=t_i}^m\{f_{l,r}\}\)
这样的话,整个\(f\)都必须要算出来,上面的枚举算法就变成\(O(n^4)\)了,跑不动。
点开标签发现有单调队列?!蒟蒻就往单调性上面想了想,于是就有了一个结论:设枚举\(x\)时有一个使答案最优的\(y\),那么当\(x\)增大时,如果\(y\)也增大那么答案不会更优。观察上面那个式子\(\min(x+tot_{l,r}+y,pre_{l,x}+suf_{r,y})\),那么因为\(pre,suf\)都是递减的,所以很显然我们不能让\(x,y\)变大而\(pre,suf\)变小。
于是,实现的时候,只要把\(y\)从大往小扫了,并不需要什么单调队列来维护它。
#include<cstdio>
#include<algorithm>
#define RG register
#define R RG int
#define G c=getchar()
#define Upd(A,L,R) {chkmx(A[i][j],A[k][j]+tot[L][R]); \
if(j>=tot[L][R])chkmx(A[i][j],A[k][j-tot[L][R]]);}
#define Calc(y) min(x+tot[l][r]+y,pre[l][x]+suf[r][y])
using namespace std;
const int N=209,M=409,INF=1e9;
int s[N],t[N],b[M],tot[M][M],pre[M][N],suf[M][N],f[M][M];
inline int in(){
RG char G;
while(c<'-')G;
R x=c&15;G;
while(c>'-')x=x*10+(c&15),G;
return x;
}
inline int min(R x,R y){return x<y?x:y;}
inline void chkmx(R&x,R y){if(x<y)x=y;}
int main(){
R n=in(),m=0,i,j,k,l,r,x,y,p0,p1,ans;
for(i=1;i<=n;++i){
b[++m]=s[i]=in();
b[++m]=t[i]=in()+s[i];
}
sort(b+1,b+m+1);//离散化
m=unique(b+1,b+m+1)-b-1;
for(i=1;i<=n;++i){
s[i]=lower_bound(b+1,b+m+1,s[i])-b;
t[i]=lower_bound(b+1,b+m+1,t[i])-b;
for(l=1;l<=s[i];++l)//tot暴力求
for(r=m;r>=t[i];--r)++tot[l][r];
}
for(i=1;i<=m;++i)//注意初始化
for(j=1;j<=n;++j)pre[i][j]=suf[i][j]=-INF;
for(i=1;i<=m;++i)
for(j=0;j<=tot[1][i];++j)
for(k=1;k<=i;++k)Upd(pre,k,i);
for(i=m;i;--i)//转移很相似,搞了个宏定义
for(j=0;j<=tot[i][m];++j)
for(k=i;k<=m;++k)Upd(suf,i,k);
for(l=1;l<=m;++l)
for(r=l+1;r<=m;++r)
for(y=n,x=0;x<=n;++x){
p0=Calc(y);//p0为最优决策,p1为当前决策
while(y&&p0<=(p1=Calc(y-1)))p0=p1,--y;
chkmx(f[l][r],Calc(y));
}
ans=0;
for(j=1;j<=n;++j)chkmx(ans,min(pre[m][j],j));
printf("%d\n",ans);
for(i=1;i<=n;++i){
ans=0;
for(l=1;l<=s[i];++l)
for(r=m;r>=t[i];--r)chkmx(ans,f[l][r]);
printf("%d\n",ans);
}
return 0;
}
洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)的更多相关文章
- 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)
传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...
- luogu P1973 [NOI2011]NOI 嘉年华 dp
LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- P1973 [NOI2011]Noi嘉年华
传送门 首先可以把时间区间离散化 然后求出 $cnt[l][r]$ 表示完全在时间 $[l,r]$ 之内的活动数量 设 $f[i][j]$ 表示当前考虑到时间 $i$,第一个会场活动数量为 $j$ 时 ...
- 洛谷P3724 [AH2017/HNOI2017]大佬(决策单调性)
传送门 这个思路很妙诶->这里 以下为了方便,我把自信说成血量好了 虽然表面上看起来每一天有很多种选择,然而我们首先要保证的是不死,然后考虑不死的情况下最多能拿出多少天来进行其他操作.不死可以d ...
- 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)
2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...
- bzoj 2436: [Noi2011]Noi嘉年华
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- 2436: [Noi2011]Noi嘉年华 - BZOJ
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
随机推荐
- linux安装jdk与配置-centos7版本
1.Linux安裝jdk 1.如果電腦沒有wget命令的,先使用yum安裝wget命令. eg: yum install wget 2.安裝好后就可以直接使用wget命令去下載jdk. 附:打開官網連 ...
- C#大型电商项目优化(二)——嫌弃EF与抛弃EF
上一篇博文中讲述了使用EF开发电商项目的代码基础篇,提到EF后,一语激起千层浪.不少园友纷纷表示:EF不适合增长速度飞快的互联网项目,EF只适合企业级应用等等. 也有部分高手提到了分布式,确实,性能优 ...
- mysql主从同步(2)-问题梳理
之前详细介绍了Mysql主从复制的原理和部署过程,在mysql同步过程中会出现很多问题,导致数据同步异常.以下梳理了几种主从同步中可能存在的问题:1)slave运行过慢不能与master同步,也就是M ...
- part 1
注意:本次源码分析选择2.0.3(因为不支持IE6.7.8,就少了很多兼容的hack的写法,对了解jQuery的实现原理有很大的帮助) 1.jQuery有不同的版本,从2.x版本便不再支持IE6.7. ...
- sql server选取第m行到第n行的元组
现在有一个表Questioin,主码是qid,要求选择第m行到第n行的元组 //方法一:效率最低 //错误:如果n<m,将选取前n条数据,如果n>=m,将选取从m+1开始的n条数据 sel ...
- 非post请求时整个url作为参数传递出现bug
在非post请求使用整个url作为参数传递到后台时会出现url被截断的bug,这时通过encodeURIComponent进行url的编码可以解决.示例如下: <!--参数url-->Ur ...
- 男神女神配——alpha阶段总结
一.需求分析 虽然公共社交网络系统能够满足大多数高校校园用户在校园网络社交的需求,但是针对校园学习.工作和文化生活等方面的支持以及学校个性化需求方面却存在不足.利用电子校务平台的数据,设计了与真实校园 ...
- Dynamic Routing Based On Redis
Dynamic Routing Based On Redis Ngnix技术研究系列2-基于Redis实现动态路由 上篇博文我们写了个引子: Ngnix技术研究系列1-通过应用场景看Nginx的反 ...
- tensorflow win10 系统下安装
安装tensorflow gpu版本 Step1 安装CUDA8.0 进入这个云盘地址下载,密码5aoc 进行CUDA8.0下载.下载完成后解压,打开exe文件直接按照默认进行安装,安装步骤比较繁琐, ...
- Online Resource Mapping for SDN Network Hypervisors using Machine Learning
发表时间:2016 一些定义: self-configuring networks: FlowVisor: FlowVisor是建立在OpenFlow之上的网络虚拟化工具,它可以将物理网络划分成多个逻 ...