传送门:洛谷

题目大意:对于一个只有一个节点的二叉树,一次操作随机将这棵树的叶节点的下方增加两个节点。$n-1$次操作后变为$n$个叶节点的二叉树。求:(1)叶节点平均深度的期望值(2)树深度的数学期望值

数据范围:$2\leq n\leq 100$


首先看第(1)问

设$f_i$为$i$个叶节点的二叉树的叶节点平均深度的期望值。

每次选择一个叶节点,扩展出两个新的叶节点,所以总的深度增加$f_{i-1}+2$

则$f_i=\frac{(i-1)*f_{i-1}+f_{i-1}+2}{i}=f_{i-1}+\frac{2}{i}$

所以

$$Ans=\sum_{i=2}^n\frac{2}{i}$$


然后是第(2)问,这个难度要稍微大一点。

我们发现这求的是$n$个数的最大值的期望,而第(1)问的是和的期望,而期望可加,却不能$\max$,就非常不好办了。

这时我们就需要用一个式子

$$E[X]=\sum_{i=1}^{n-1}P(X\geq i)$$

然后就可以转化为其中一个数$\geq i$的概率。

就很容易想到$dp[i][j]$表示$i$个叶节点的二叉树中深度$\geq j$,则左子树深度$\geq j-1$或右子树深度$\geq j-1$

所以

$$dp[i][j]=\frac{\sum_{k=1}^{i-1}(dp[k][j-1]+dp[i-k][j-1]-dp[k][j-1]*dp[i-k][j-1])}{i-1}$$

$$Ans=\sum_{i=1}^{n-1}dp[n][i]$$

然后就做完了。

 #include<cstdio>
#define Rint register int
using namespace std;
const int N = ;
int q, n;
double dp[N][N], ans;
int main(){
scanf("%d%d", &q, &n);
if(q == )
for(Rint i = ;i <= n;i ++) ans += 2.0 / i;
else {
for(Rint i = ;i <= n;i ++) dp[i][] = ;
for(Rint i = ;i <= n;i ++){
for(Rint j = ;j < n;j ++){
for(Rint k = ;k < i;k ++)
dp[i][j] += dp[k][j - ] + dp[i - k][j - ] - dp[k][j - ] * dp[i - k][j - ];
dp[i][j] /= i - ;
}
}
for(Rint i = ;i < n;i ++) ans += dp[n][i];
}
printf("%.6f", ans);
}

Luogu3830

luogu3830 [SHOI2012]随机树的更多相关文章

  1. [SHOI2012]随机树

    [SHOI2012]随机树 题目大意( 网址戳我! ) 随机树是一颗完全二叉树,初始状态下只有一个节点. 随机树的生成如下:每次随机选择一个叶子节点,扩展出两个儿子. 现在给定一个正整数\(n\)(\ ...

  2. P3830 [SHOI2012]随机树 题解

    P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...

  3. P3830 [SHOI2012]随机树

    P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...

  4. bzoj2830: [Shoi2012]随机树

    题目链接 bzoj2830: [Shoi2012]随机树 题解 q1好做 设f[n]为扩展n次后的平均深度 那么\(f[n] = \frac{f[n - 1] * (n - 1) + f[n - 1] ...

  5. luogu P3830 [SHOI2012]随机树 期望 dp

    LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...

  6. luogu P3830 [SHOI2012]随机树

    输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结点平均 ...

  7. [SHOI2012]随机树[期望dp]

    题意 初始 \(1\) 个节点,每次选定一个叶子节点并加入两个儿子直到叶子总数为 \(n\),问叶子节点深度和的平均值的期望以及最大叶子深度的期望. \(n\leq 100\) . 分析 对于第一问, ...

  8. 洛谷P3830 [SHOI2012]随机树(期望dp)

    题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...

  9. 【[SHOI2012]随机树】

    感觉第一问就非常神仙,还有第二问怎么被我当成组合数学题来做了 首先是第一问 期望具有线性性,于是深度平均值的期望等于深度和的期望值的平均 设\(dp_x\)表示具有\(x\)个叶子节点的树的深度和的期 ...

随机推荐

  1. bootstrap-datepicker应用

    参考本人的github:https://github.com/gmqllf/Datepicker-for-Bootstrap (fork官方的) 一.使用datepicker for bootstra ...

  2. Linux 安装Zookeeper集群

    1.解压,配置环境变量 export ZOOKEEPER_HOME=/usr/local/zkexport PATH=.:$HADOOP_HOME/bin:$ZOOKEEPER_HOME/bin:$J ...

  3. 【资料下载区】【GMT43相关代码、资料下载地址】更新日期2017/06/28

    [GMT43相关文档][更新中...] GMT43原理图(PDF)下载GMT43说明书(PDF)下载GMT43机械结构尺寸(PDF)下载 [GMT43相关例程代码][ARM][更新中...] 基于HA ...

  4. 织梦dedecms安全设置详情

    第一.安装的时候数据库的表前缀,最好改一下,不用dedecms默认的前缀dede_,可以改成ljs_,随便一个名称即可. 第二.后台登录开启验证码功能,将默认管理员admin删除,改成一个自己专用的, ...

  5. R语言 启动报错 *** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 *** 错误 解决方案

    *** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 ...

  6. JAVA并发编程——守护线程(Daemon Thread)

    在Java中有两类线程:用户线程 (User Thread).守护线程 (Daemon Thread). 所谓守护 线程,是指在程序运行的时候在后台提供一种通用服务的线程,比如垃圾回收线程就是一个很称 ...

  7. (原)关于MEPG-2中的TS流数据格式学习

    关于MEPG-2中的TS流数据格式学习 Author:lihaiping1603 原创:http://www.cnblogs.com/lihaiping/p/8572997.html 本文主要记录了, ...

  8. [转]SASS用法指南

    [转]SASS用法指南 转自阮一峰 SASS用法指南 一.什么是SASS SASS是一种CSS的开发工具,提供了许多便利的写法,大大节省了设计者的时间,使得CSS的开发,变得简单和可维护. 本文总结了 ...

  9. SQLSERVER查询那个表里有数据

    declare @table table (rows int,tablename nvarchar(100));declare @sql NVARCHAR(MAX)declare @rows int; ...

  10. 最简单的方式离线部署Python依赖包

    最简单的方式离线部署Python依赖包 SHOW ME CODE! 打包: $ tempdir=$(mktemp -d /tmp/wheelhouse-XXXXX) $ pip wheel -r re ...