《转》Logistic回归 多分类问题的推广算法--Softmax回归
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92
简介
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签
可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合。(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护。http://yann.lecun.com/exdb/mnist/ )
回想一下在 logistic 回归中,我们的训练集由
个已标记的样本构成:
,其中输入特征
。(我们对符号的约定如下:特征向量
的维度为
,其中
对应截距项 。) 由于 logistic 回归是针对二分类问题的,因此类标记
。假设函数(hypothesis function) 如下:
我们将训练模型参数
,使其能够最小化代价函数 :
在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标
可以取
个不同的值(而不是 2 个)。因此,对于训练集
,我们有
。(注意此处的类别下标从 1 开始,而不是 0)。例如,在 MNIST 数字识别任务中,我们有
个不同的类别。
对于给定的测试输入
,我们想用假设函数针对每一个类别j估算出概率值
。也就是说,我们想估计
的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个
维的向量(向量元素的和为1)来表示这
个估计的概率值。 具体地说,我们的假设函数
形式如下:
其中
是模型的参数。请注意
这一项对概率分布进行归一化,使得所有概率之和为 1 。
为了方便起见,我们同样使用符号
来表示全部的模型参数。在实现Softmax回归时,将
用一个
的矩阵来表示会很方便,该矩阵是将
按行罗列起来得到的,如下所示:
代价函数
现在我们来介绍 softmax 回归算法的代价函数。在下面的公式中,
是示性函数,其取值规则为:
值为真的表达式
,
值为假的表达式
。举例来说,表达式
的值为1 ,
的值为 0。我们的代价函数为:
值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:
可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的
个可能值进行了累加。注意在Softmax回归中将
分类为类别
的概率为:
.
对于
的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经过求导,我们得到梯度公式如下:
让我们来回顾一下符号 "
" 的含义。
本身是一个向量,它的第
个元素
是
对
的第
个分量的偏导数。
有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化
。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新:
(
)。
当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍使用它的动机和细节。
Softmax回归模型参数化的特点
Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量
中减去了向量
,这时,每一个
都变成了
(
)。此时假设函数变成了以下的式子:
换句话说,从
中减去
完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说, Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数
。
进一步而言,如果参数
是代价函数
的极小值点,那么
同样也是它的极小值点,其中
可以为任意向量。因此使
最小化的解不是唯一的。(有趣的是,由于
仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)
注意,当
时,我们总是可以将
替换为
(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量
(或者其他
中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的
个参数
(其中
),我们可以令
,只优化剩余的
个参数,这样算法依然能够正常工作。
在实际应用中,为了使算法实现更简单清楚,往往保留所有参数
,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。
权重衰减
我们通过添加一个权重衰减项
来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:
有了这个权重衰减项以后 (
),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为
是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。
为了使用优化算法,我们需要求得这个新函数
的导数,如下:
通过最小化
,我们就能实现一个可用的 softmax 回归模型。
Softmax回归与Logistic 回归的关系
当类别数
时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当
时,softmax 回归的假设函数为:
利用softmax回归参数冗余的特点,我们令
,并且从两个参数向量中都减去向量
,得到:
因此,用
来表示
,我们就会发现 softmax 回归器预测其中一个类别的概率为
,另一个类别概率的为
,这与 logistic回归是一致的。
Softmax 回归 vs. k 个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声
。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i)
假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii)
现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
中英文对照
- Softmax回归 Softmax Regression
- 有监督学习 supervised learning
- 无监督学习 unsupervised learning
- 深度学习 deep learning
- logistic回归 logistic regression
- 截距项 intercept term
- 二元分类 binary classification
- 类型标记 class labels
- 估值函数/估计值 hypothesis
- 代价函数 cost function
- 多元分类 multi-class classification
- 权重衰减 weight decay
《转》Logistic回归 多分类问题的推广算法--Softmax回归的更多相关文章
- 逻辑回归,多分类推广算法softmax回归中
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...
- Softmax回归——logistic回归模型在多分类问题上的推广
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...
- LR多分类推广 - Softmax回归*
LR是一个传统的二分类模型,它也可以用于多分类任务,其基本思想是:将多分类任务拆分成若干个二分类任务,然后对每个二分类任务训练一个模型,最后将多个模型的结果进行集成以获得最终的分类结果.一般来说,可以 ...
- 机器学习之线性回归---logistic回归---softmax回归
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...
- Softmax回归 softMax回归与logistic回归的关系
简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分 ...
- Softmax回归(Softmax Regression)
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...
- Softmax回归(Softmax Regression
多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有3个取值的离散值.这是一个多分类问题,二分类模型在这里不 ...
- 机器学习——softmax回归
softmax回归 前面介绍了线性回归模型适用于输出为连续值的情景.在另一类情景中,模型输出可以是一个像图像类别这样的离散值.对于这样的离散值预测问题,我们可以使用诸如 softmax 回归在内的分类 ...
- 【神经网络】softmax回归
前言 softmax回归为一种分类模型. 基本原理 由于softmax回归也是一种线性叠加算法,且需要输出离散值. 很自然地想到,可以取值最大的输出为置信输出.更进一步想到,如果有三个人A.B.C分别 ...
随机推荐
- Servlet(6)—HttpServletRequest接口和HttpServletResponse接口
HttpServletRequest接口和HttpServletResponse接口是继承ServletRequest和ServletResponse接口,是他们的子接口,但是我们在程序中进程看到Se ...
- 3、css初识
前端内容就分三部分html.css.javascript(js),对一个网页来说html相当于是一个裸体的人,css相当于给这个人穿上了衣服,javascript相当于给这个人赋予动作行为,今天我们要 ...
- 咏南APP(手机)开发框架
咏南APP(手机)开发框架 有意者可向咏南索取DEMO. 基于DELPHI官方的FIREMONKEY类库构建,不使用任何三方控件. 原生手机框架,支持各种手机硬件操作. 主界面 聊天 照相并分享 短信 ...
- 解决Spring Boot OTS parsing error: Failed to convert WOFF 2.0
<build> <resources> <resource> <directory>${project.basedir}/src/main/resour ...
- wsdl 生成 java 代码 java 使用CXF将wsdl文件生成客户端代码命令java调用第三方的webservice应用实例 推荐使用, 并且设置了 utf8
推荐使用, 并且设置了 utf8 wsdl2java -p cn.smborderservice -encoding utf-8 -d f:\logink\src -all -autoNameRes ...
- DBS:TestSys
ylbtech-DBS:TestSys 1.返回顶部 1. -- ============================================= -- 测试系统 -- 2018-4-12 ...
- android:Android中用文件初始化sqlite数据库(zz)
很多时候在应用安装初始化时,需要创建本地数据库,同时为数据库添加数据,之后再从数据库中读取数据. 这里有2个思路 1.先在本地创建一个能支持android使用的sqlite数据库文件,启动时, ...
- VUE温习:nextTick、$refs、嵌套路由、keep-alive缓存、is特性、路由属性用法、路由钩子函数
一.$nextTick 1.vue的dom执行异步更新,只要观察到数据变化,vue将开启一个队列,并缓冲在同一事件循环中发生的所有数据改变. 2.vue.$nextTick(cb),数据发生变化,更新 ...
- EasyMock 简单使用
参考案例:(本位使用markdown编写)https://www.ibm.com/developerworks/cn/opensource/os-cn-easymock/https://www.yii ...
- mybatis --- 如何相互转换逗号分隔的字符串和List
如果程序员想实现某种功能,有两条路可以走.一条就是自己实现,一条就是调用别人的实现,别人的实现就是所谓的API.而且大多数情况下,好多“别人”都 实现了这个功能.程序员有不得不在这其中选择.大部分情况 ...

