系统与系统的数据交互中,有些敏感数据是不能直接明文传输的,所以在发送数据之前要进行加密,在接收到数据时进行解密处理;然而由于系统与系统之间的开发语言不同。

本次需求是生成二维码是通过java生成,由php来解密。基于这类需求所以选择了RSA进行加解密。

生成RSA公私钥分成三步生成,第1、2步可以满足php的使用,由于java的私钥要转化为PKCS8格式才能使用,所以执行第3步来实现。

还有一种加密方式参考: DES ECB 模式 JAVA PHP C# 实现 加密 解密 兼容 。

1、生成私钥

openssl genrsa -out rsa_private_key.pem  

如下:

-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC6BSDlbRplhMMNZBKHX4xe8AwESpzHVfAcHHsX9FFSMuF91W3c
xgT/g5n+qlLLFzCE3hWG/yX5NMAxR4mS3MlhyXKwko3tK9Ua691afod1lxORR3Ia
Z8nV7v5Bv8y4JDe4E3/f/bQIGzroWiJ0sXTcO41GqvOw3G9leClSvjVnSwIDAQAB
AoGAagooYYCbTomq4wRL562ZCDmQsBWUX7Fmia/Wn6YfgVsN3bx/vx2Gld2AOIMB
ZVJXzzYGUYk7LV9bu/vKudRwWvtPIYzxPEOBoaFGPrEPTAfDVwOklhzTz3zDmCHi
hLSpjQXYCG7boZ6G96NfKyTRSGPqgovHY3+KJvd/gAoZqOkCQQDt9YXfanpuwZx1
7MYjMEvoh5UY1vSsV72ts3/gTVEUkWdfXHj0XhyRhOL9Qu99TGZcoEwecygoUPLm
dySyiXl/AkEAyB+JP8W7oTG/HTHc5QGDfwlPjIH1o5YG2I8Tp02i3G7OTJc/b9/+
SPxcKsT78xrgox5ModPKBX50F783Y2DANQJBAKY4Mjp882b4gWVybnlYHD4ir0h5
ptHYPFvgnfu9plx6sT3Qp4DzWHth2vlUT1w0CPC83E8M28lFula4dP7tvtsCQQCt
a2asdNVbophS3FrnuKAS/iaJRDVxRRk5oQMPACAZlYwAozC96gWZidb02S7cRHZV
5HPT6IwwppxD19hPrg/hAkBdnl+BGF/eRw80OHJtZBkLnY4Hx9YGft9AyIp3SB1z
QDhaWHgFA+8lED+bWTvJxt/IMmzyYBaGnZbEjCECKZLD
-----END RSA PRIVATE KEY-----

2、生成公钥

openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem

如下:

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC6BSDlbRplhMMNZBKHX4xe8AwE
SpzHVfAcHHsX9FFSMuF91W3cxgT/g5n+qlLLFzCE3hWG/yX5NMAxR4mS3MlhyXKw
ko3tK9Ua691afod1lxORR3IaZ8nV7v5Bv8y4JDe4E3/f/bQIGzroWiJ0sXTcO41G
qvOw3G9leClSvjVnSwIDAQAB
-----END PUBLIC KEY-----

3、将RSA私钥转换成PKCS8格式

openssl pkcs8 -topk8 -inform PEM -in rsa_private_key.pem -outform PEM -nocrypt > java_rsa_private_key.pem

如下:

-----BEGIN PRIVATE KEY-----
MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBALoFIOVtGmWEww1k
EodfjF7wDARKnMdV8Bwcexf0UVIy4X3VbdzGBP+Dmf6qUssXMITeFYb/Jfk0wDFH
iZLcyWHJcrCSje0r1Rrr3Vp+h3WXE5FHchpnydXu/kG/zLgkN7gTf9/9tAgbOuha
InSxdNw7jUaq87Dcb2V4KVK+NWdLAgMBAAECgYBqCihhgJtOiarjBEvnrZkIOZCw
FZRfsWaJr9afph+BWw3dvH+/HYaV3YA4gwFlUlfPNgZRiTstX1u7+8q51HBa+08h
jPE8Q4GhoUY+sQ9MB8NXA6SWHNPPfMOYIeKEtKmNBdgIbtuhnob3o18rJNFIY+qC
i8djf4om93+AChmo6QJBAO31hd9qem7BnHXsxiMwS+iHlRjW9KxXva2zf+BNURSR
Z19cePReHJGE4v1C731MZlygTB5zKChQ8uZ3JLKJeX8CQQDIH4k/xbuhMb8dMdzl
AYN/CU+MgfWjlgbYjxOnTaLcbs5Mlz9v3/5I/FwqxPvzGuCjHkyh08oFfnQXvzdj
YMA1AkEApjgyOnzzZviBZXJueVgcPiKvSHmm0dg8W+Cd+72mXHqxPdCngPNYe2Ha
+VRPXDQI8LzcTwzbyUW6Vrh0/u2+2wJBAK1rZqx01VuimFLcWue4oBL+JolENXFF
GTmhAw8AIBmVjACjML3qBZmJ1vTZLtxEdlXkc9PojDCmnEPX2E+uD+ECQF2eX4EY
X95HDzQ4cm1kGQudjgfH1gZ+30DIindIHXNAOFpYeAUD7yUQP5tZO8nG38gybPJg
FoadlsSMIQIpksM=
-----END PRIVATE KEY-----

4.JAVA版本加解密:

import org.apache.commons.codec.binary.Base64;
import org.apache.commons.lang3.ArrayUtils; import javax.crypto.Cipher;
import java.security.*;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec; public class RSAUtils { /**
* RSA最大加密明文大小
*/
private static final int MAX_ENCRYPT_BLOCK = 117; /**
* RSA最大解密密文大小
*/
private static final int MAX_DECRYPT_BLOCK = 128; public static final String SIGN_ALGORITHMS = "SHA256withRSA"; private static String ALGORITHM_RSA = "RSA"; /**
* 使用公钥将数据加密
* @param sourceData
* @param publicKey
* @return
*/
public static String publicEncrypt(String sourceData, String publicKey){
return rsaEncrypt(sourceData,publicKey,false);
} /**
* 使用私钥将数据加密
* @param sourceData
* @param privateKey
* @return
*/
public static String privateEncrypt(String sourceData, String privateKey){
return rsaEncrypt(sourceData,privateKey,true);
} /**
* 使用公钥解密
* @param encryptedData
* @param privateKey
* @return
*/
public static String publicDecrypt(String encryptedData, String privateKey) {
return rsaDecrypt(encryptedData,privateKey,false);
} /**
* 使用私钥解密
* @param encryptedData
* @param privateKey
* @return
*/
public static String privateDecrypt(String encryptedData, String privateKey) {
return rsaDecrypt(encryptedData,privateKey,true);
} protected static String rsaEncrypt(String sourceData, String key,boolean isPrivate){
try {
Key key1 = isPrivate ? loadPrivateKey(key) : loadPublicKey(key);
byte[] data = sourceData.getBytes();
byte[] dataReturn = new byte[0];
Cipher cipher = Cipher.getInstance(ALGORITHM_RSA);
cipher.init(Cipher.ENCRYPT_MODE, key1); // 加密时超过117字节就报错。为此采用分段加密的办法来加密
StringBuilder sb = new StringBuilder();
for (int i = 0; i < data.length; i += MAX_ENCRYPT_BLOCK) {
byte[] doFinal = cipher.doFinal(ArrayUtils.subarray(data, i,i + MAX_ENCRYPT_BLOCK));
sb.append(new String(doFinal));
dataReturn = ArrayUtils.addAll(dataReturn, doFinal);
} return Base64.encodeBase64URLSafeString(dataReturn);
} catch (Exception e) {
e.printStackTrace();
return null;
}
} protected static String rsaDecrypt(String encryptedData, String key,boolean isPrivate){
try {
Key key1 = isPrivate ? loadPrivateKey(key) : loadPublicKey(key);
byte[] data = Base64.decodeBase64(encryptedData); Cipher cipher = Cipher.getInstance(ALGORITHM_RSA);
cipher.init(Cipher.DECRYPT_MODE, key1); // 解密时超过128字节就报错。为此采用分段解密的办法来解密
byte[] dataReturn = new byte[0];
for (int i = 0; i < data.length; i += MAX_DECRYPT_BLOCK) {
byte[] doFinal = cipher.doFinal(ArrayUtils.subarray(data, i, i + MAX_DECRYPT_BLOCK));
dataReturn = ArrayUtils.addAll(dataReturn, doFinal);
} return new String(dataReturn);
} catch (Exception e) {
e.printStackTrace();
return null;
}
} /**
* 私钥加签名
* @param encryptData
* @param privateKey
* @return
*/
public static String rsaSign(String encryptData, String privateKey) {
try {
Signature signature = Signature.getInstance(SIGN_ALGORITHMS);
signature.initSign(loadPrivateKey(privateKey));
signature.update(encryptData.getBytes());
byte[] signed = signature.sign();
return Base64.encodeBase64URLSafeString(signed);
} catch (Exception e) {
e.printStackTrace();
}
return null;
} /**
* 公钥验签
* @param encryptStr
* @param sign
* @param publicKey
* @return
* @throws Exception
*/
public static boolean verifySign(String encryptStr, String sign, String publicKey)throws Exception {
try {
Signature signature = Signature.getInstance(SIGN_ALGORITHMS);
signature.initVerify(loadPublicKey(publicKey));
signature.update(encryptStr.getBytes());
return signature.verify(Base64.decodeBase64(sign));
} catch (NoSuchAlgorithmException e) {
throw new Exception(String.format("验证数字签名时没有[%s]此类算法", SIGN_ALGORITHMS));
} catch (InvalidKeyException e) {
throw new Exception("验证数字签名时公钥无效");
} catch (SignatureException e) {
throw new Exception("验证数字签名时出现异常");
}
} public static PublicKey loadPublicKey(String publicKeyStr) throws Exception {
byte[] buffer = Base64.decodeBase64(publicKeyStr);
KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM_RSA);
X509EncodedKeySpec keySpec = new X509EncodedKeySpec(buffer);
return keyFactory.generatePublic(keySpec);
} public static PrivateKey loadPrivateKey(String privateKeyStr) throws Exception {
byte[] buffer = Base64.decodeBase64(privateKeyStr);
PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(buffer);
KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM_RSA);
return keyFactory.generatePrivate(keySpec);
} public static String urlsafe_encode (String encryptStr){
return encryptStr.replaceAll("\\+","-").replaceAll("/","_").replaceAll("=","").replaceAll("(\r\n|\r|\n|\n\r)",""); } public static String urlsafe_decode(String encryptStr){
encryptStr= encryptStr.replaceAll("-","+").replaceAll("_","/");
int mob = encryptStr.length()%4;
if(mob>0){
encryptStr+="====".substring(mob);
}
return encryptStr;
} public static void main(String[ ] asdfs) throws Exception {
String publicKeyStr = "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC6BSDlbRplhMMNZBKHX4xe8AwE" +
"SpzHVfAcHHsX9FFSMuF91W3cxgT/g5n+qlLLFzCE3hWG/yX5NMAxR4mS3MlhyXKw" +
"ko3tK9Ua691afod1lxORR3IaZ8nV7v5Bv8y4JDe4E3/f/bQIGzroWiJ0sXTcO41G" +
"qvOw3G9leClSvjVnSwIDAQAB";
String privateKeyStr = "MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBALoFIOVtGmWEww1k" +
"EodfjF7wDARKnMdV8Bwcexf0UVIy4X3VbdzGBP+Dmf6qUssXMITeFYb/Jfk0wDFH" +
"iZLcyWHJcrCSje0r1Rrr3Vp+h3WXE5FHchpnydXu/kG/zLgkN7gTf9/9tAgbOuha" +
"InSxdNw7jUaq87Dcb2V4KVK+NWdLAgMBAAECgYBqCihhgJtOiarjBEvnrZkIOZCw" +
"FZRfsWaJr9afph+BWw3dvH+/HYaV3YA4gwFlUlfPNgZRiTstX1u7+8q51HBa+08h" +
"jPE8Q4GhoUY+sQ9MB8NXA6SWHNPPfMOYIeKEtKmNBdgIbtuhnob3o18rJNFIY+qC" +
"i8djf4om93+AChmo6QJBAO31hd9qem7BnHXsxiMwS+iHlRjW9KxXva2zf+BNURSR" +
"Z19cePReHJGE4v1C731MZlygTB5zKChQ8uZ3JLKJeX8CQQDIH4k/xbuhMb8dMdzl" +
"AYN/CU+MgfWjlgbYjxOnTaLcbs5Mlz9v3/5I/FwqxPvzGuCjHkyh08oFfnQXvzdj" +
"YMA1AkEApjgyOnzzZviBZXJueVgcPiKvSHmm0dg8W+Cd+72mXHqxPdCngPNYe2Ha" +
"+VRPXDQI8LzcTwzbyUW6Vrh0/u2+2wJBAK1rZqx01VuimFLcWue4oBL+JolENXFF" +
"GTmhAw8AIBmVjACjML3qBZmJ1vTZLtxEdlXkc9PojDCmnEPX2E+uD+ECQF2eX4EY" +
"X95HDzQ4cm1kGQudjgfH1gZ+30DIindIHXNAOFpYeAUD7yUQP5tZO8nG38gybPJg" +
"FoadlsSMIQIpksM="; //加密
String data = "i like java";
String privateEncryptStr = RSAUtils.privateEncrypt(data, privateKeyStr);
String publicEncryptStr = RSAUtils.publicEncrypt(data, publicKeyStr);
String privateEncryptSign = RSAUtils.rsaSign(privateEncryptStr,privateKeyStr);
String publicEncryptSign = RSAUtils.rsaSign(publicEncryptStr,privateKeyStr); System.out.println("source:" + data);
System.out.println("private encryptStr: " + privateEncryptStr);
System.out.println("public encryptStr: " + publicEncryptStr);
System.out.println("private encrypt sign: " + privateEncryptSign);
System.out.println("public encrypt sign: " + publicEncryptSign);
System.out.println("public decrypt:" + RSAUtils.publicDecrypt(privateEncryptStr, publicKeyStr));
System.out.println("private decrypt:" + RSAUtils.privateDecrypt(publicEncryptStr, privateKeyStr));
System.out.println("verifySign1: " + RSAUtils.verifySign(privateEncryptStr,privateEncryptSign,publicKeyStr));
System.out.println("verifySign2: " + RSAUtils.verifySign(publicEncryptStr,publicEncryptSign,publicKeyStr)); System.out.println("\r\n");
publicEncryptStr = "WopnO2LnolZ7XpOwA_ktOhfkkaQQJQgkJudk3ZH_-ob36GQFv968nE1UBXxNekA9pIHBcvcl0ZWfwFhk-kyOF2FmQvpPY9LkqiCV0T32vhJet0n93ti2PBoFILxvChjzdOgSG9M0flH78Vm696Q4mHo7VMt_XMoHDTd3Rbagvt8";
privateEncryptStr = "Fwb5BtLRveCWbx7FkXarl1zVOdwDvbDTl7gv-vPHXpj-T2wm9GlUDn3X0wnHHXkE8cqAT6PcE0g0ide6beP9_ysHMLgnC6wVqkomIKsi6C9TcGd4d6XQBjeJgdgccvDcD-7pcKrV9W-_Z7jkYkwwrjPGPd_uckEHR_cDXyOX4PU";
System.out.println("php >>>> private decrypt: " + RSAUtils.privateDecrypt(publicEncryptStr, privateKeyStr));
System.out.println("php >>>> public decrypt: " + RSAUtils.publicDecrypt(privateEncryptStr, publicKeyStr)); publicEncryptStr = "T2LFtY3dF_b6OBO07BN-3LtMSEBZqDukovDZ4HGCff8wosvlowf6IFJ3U7LFBIeHfiHBKiFuAV8-pFltCfTXtA4AwgVUnwbBMBWBfIJiLDi02ev30V-5BcYEuSF-cEdnSUd7WecrX4rHhzYLueGuj8H6c7RRbSbrJ6_3EFfU-K0";
System.out.println("js >>>> private decrypt: " + RSAUtils.privateDecrypt(publicEncryptStr, privateKeyStr));
}
}

输出如下:

source: i like java
private encryptStr: fHG5JMpTTF-KzrPCp827opRy3BvqmVIpIZS4gVuWqY5NeLsgoLxdrq3SaxUp_oBQ9pVqNlEiU9SIwbqJDjIqjHsCtVMOLoEdWicib_wCaoB16veKTEC4GnvviJwlS5IedH27oWGHKTTc6Ii5cLiQncjDAadvm0KCdC74yrwPqnc
public encryptStr: raoQQsfN0KBfPAMRWnxr9kFPvJ6BgQ7PRBCMnz0nWsH03sD4IdlMvKpj78BHe7V7Ga1HZHyDxuJhVaJ0T5qKl8qHXzvKquzNtdMru7G4X9o8ylzkGxJLg-HYCWOrsZ77ZMaKoV9p-TCf-yMI21OpL_5JGot-XNfVVPkmg0z9FW0
private encrypt sign: jlJvXY5t8KesDi3WaPr71jj2BigHLDr3b827Jl9xspbecdUjPB44Xe3sjWnzvFDLpKJGiNTvqE-Qyu3FZpG_NyI5yhVrAQgZmyYfVywmeDDsTOQYk1xP0UEfFgB0MXsFdlfSdMu5JcR5kgC5Xl5jds1b0Z2Nq7gQ-bvFJQcuHgU
public encrypt sign: ngN2kQppfITyn5yAfNc1c-ofK20trKJWXIjlaJhWtm7s2jzv5rcsPY5JH06CMAIIbnKGIUcoVvMeKavAIVFb4G_h3CvXIYnxMjQL19Op-SbtyGNwT-rZzTEP8tKfxFRVm7SrHHDz2s287S3vqQz9vGEGNmgDHEdrCfHBmmoFkQA
public decrypt: i like java
private decrypt: i like java
verifySign1: true
verifySign2: true php >>>> private decrypt: i like php
php >>>> public decrypt: i like php js >>>> private decrypt: i like JS

5.PHP版本加解密

<?php

$private_key = <<<KEY
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC6BSDlbRplhMMNZBKHX4xe8AwESpzHVfAcHHsX9FFSMuF91W3c
xgT/g5n+qlLLFzCE3hWG/yX5NMAxR4mS3MlhyXKwko3tK9Ua691afod1lxORR3Ia
Z8nV7v5Bv8y4JDe4E3/f/bQIGzroWiJ0sXTcO41GqvOw3G9leClSvjVnSwIDAQAB
AoGAagooYYCbTomq4wRL562ZCDmQsBWUX7Fmia/Wn6YfgVsN3bx/vx2Gld2AOIMB
ZVJXzzYGUYk7LV9bu/vKudRwWvtPIYzxPEOBoaFGPrEPTAfDVwOklhzTz3zDmCHi
hLSpjQXYCG7boZ6G96NfKyTRSGPqgovHY3+KJvd/gAoZqOkCQQDt9YXfanpuwZx1
7MYjMEvoh5UY1vSsV72ts3/gTVEUkWdfXHj0XhyRhOL9Qu99TGZcoEwecygoUPLm
dySyiXl/AkEAyB+JP8W7oTG/HTHc5QGDfwlPjIH1o5YG2I8Tp02i3G7OTJc/b9/+
SPxcKsT78xrgox5ModPKBX50F783Y2DANQJBAKY4Mjp882b4gWVybnlYHD4ir0h5
ptHYPFvgnfu9plx6sT3Qp4DzWHth2vlUT1w0CPC83E8M28lFula4dP7tvtsCQQCt
a2asdNVbophS3FrnuKAS/iaJRDVxRRk5oQMPACAZlYwAozC96gWZidb02S7cRHZV
5HPT6IwwppxD19hPrg/hAkBdnl+BGF/eRw80OHJtZBkLnY4Hx9YGft9AyIp3SB1z
QDhaWHgFA+8lED+bWTvJxt/IMmzyYBaGnZbEjCECKZLD
-----END RSA PRIVATE KEY-----
KEY; $private8_key = <<<KEY
-----BEGIN PRIVATE KEY-----
MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBALoFIOVtGmWEww1k
EodfjF7wDARKnMdV8Bwcexf0UVIy4X3VbdzGBP+Dmf6qUssXMITeFYb/Jfk0wDFH
iZLcyWHJcrCSje0r1Rrr3Vp+h3WXE5FHchpnydXu/kG/zLgkN7gTf9/9tAgbOuha
InSxdNw7jUaq87Dcb2V4KVK+NWdLAgMBAAECgYBqCihhgJtOiarjBEvnrZkIOZCw
FZRfsWaJr9afph+BWw3dvH+/HYaV3YA4gwFlUlfPNgZRiTstX1u7+8q51HBa+08h
jPE8Q4GhoUY+sQ9MB8NXA6SWHNPPfMOYIeKEtKmNBdgIbtuhnob3o18rJNFIY+qC
i8djf4om93+AChmo6QJBAO31hd9qem7BnHXsxiMwS+iHlRjW9KxXva2zf+BNURSR
Z19cePReHJGE4v1C731MZlygTB5zKChQ8uZ3JLKJeX8CQQDIH4k/xbuhMb8dMdzl
AYN/CU+MgfWjlgbYjxOnTaLcbs5Mlz9v3/5I/FwqxPvzGuCjHkyh08oFfnQXvzdj
YMA1AkEApjgyOnzzZviBZXJueVgcPiKvSHmm0dg8W+Cd+72mXHqxPdCngPNYe2Ha
+VRPXDQI8LzcTwzbyUW6Vrh0/u2+2wJBAK1rZqx01VuimFLcWue4oBL+JolENXFF
GTmhAw8AIBmVjACjML3qBZmJ1vTZLtxEdlXkc9PojDCmnEPX2E+uD+ECQF2eX4EY
X95HDzQ4cm1kGQudjgfH1gZ+30DIindIHXNAOFpYeAUD7yUQP5tZO8nG38gybPJg
FoadlsSMIQIpksM=
-----END PRIVATE KEY-----
KEY; $public_key = <<<KEY
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC6BSDlbRplhMMNZBKHX4xe8AwE
SpzHVfAcHHsX9FFSMuF91W3cxgT/g5n+qlLLFzCE3hWG/yX5NMAxR4mS3MlhyXKw
ko3tK9Ua691afod1lxORR3IaZ8nV7v5Bv8y4JDe4E3/f/bQIGzroWiJ0sXTcO41G
qvOw3G9leClSvjVnSwIDAQAB
-----END PUBLIC KEY-----
KEY; $data = 'i like php';
//使用公钥将数据加密
$encrypt_data = RsaUtils::publicEncrypt($data,$public_key);
//使用私钥将数据解密
$decrypt_data = RsaUtils::privateDecrypt($encrypt_data,$private_key); echo 'public encrypt data:'.$encrypt_data.PHP_EOL;
echo 'private decrypt data:'.$decrypt_data.PHP_EOL; //使用私钥将数据加密
$encrypt_data = RsaUtils::privateEncrypt($data,$private_key);
//使用私钥将加密数据加签
$private_encrypt_sign = RsaUtils::rsaSign($encrypt_data,$private_key);
//使用公钥解签
$public_check_sign = RsaUtils::verifySign($encrypt_data,$private_encrypt_sign,$public_key);
//使用公钥将数据解密
$decrypt_data = RsaUtils::publicDecrypt($encrypt_data,$public_key); echo 'private encrypt data: '.$encrypt_data.PHP_EOL;
echo 'private encrypt sign: '.$private_encrypt_sign.PHP_EOL;
echo 'public check sign: '.$public_check_sign.PHP_EOL;
echo 'public decrypt data: '.$decrypt_data.PHP_EOL; //验证java加密解密方法
$private_encrypt_data = 'fHG5JMpTTF-KzrPCp827opRy3BvqmVIpIZS4gVuWqY5NeLsgoLxdrq3SaxUp_oBQ9pVqNlEiU9SIwbqJDjIqjHsCtVMOLoEdWicib_wCaoB16veKTEC4GnvviJwlS5IedH27oWGHKTTc6Ii5cLiQncjDAadvm0KCdC74yrwPqnc';
$public_decrypt_data = RsaUtils::publicDecrypt($private_encrypt_data,$public_key);
$sign_data1 = 'jlJvXY5t8KesDi3WaPr71jj2BigHLDr3b827Jl9xspbecdUjPB44Xe3sjWnzvFDLpKJGiNTvqE-Qyu3FZpG_NyI5yhVrAQgZmyYfVywmeDDsTOQYk1xP0UEfFgB0MXsFdlfSdMu5JcR5kgC5Xl5jds1b0Z2Nq7gQ-bvFJQcuHgU';
$verify_sign1 = RsaUtils::verifySign($private_encrypt_data,$sign_data1,$public_key); $public_encrypt_data = 'raoQQsfN0KBfPAMRWnxr9kFPvJ6BgQ7PRBCMnz0nWsH03sD4IdlMvKpj78BHe7V7Ga1HZHyDxuJhVaJ0T5qKl8qHXzvKquzNtdMru7G4X9o8ylzkGxJLg-HYCWOrsZ77ZMaKoV9p-TCf-yMI21OpL_5JGot-XNfVVPkmg0z9FW0';
$private_decrypt_data = RsaUtils::privateDecrypt($public_encrypt_data, $private_key);
$sign_data2 = 'ngN2kQppfITyn5yAfNc1c-ofK20trKJWXIjlaJhWtm7s2jzv5rcsPY5JH06CMAIIbnKGIUcoVvMeKavAIVFb4G_h3CvXIYnxMjQL19Op-SbtyGNwT-rZzTEP8tKfxFRVm7SrHHDz2s287S3vqQz9vGEGNmgDHEdrCfHBmmoFkQA';
$verify_sign2 = RsaUtils::verifySign($public_encrypt_data,$sign_data2,$public_key); echo PHP_EOL;
echo 'public_decrypt_data: '.$public_decrypt_data.PHP_EOL;
echo 'verifySign1: '. $verify_sign1.PHP_EOL; echo 'private_decrypt_data: '.$private_decrypt_data.PHP_EOL;
echo 'verifySign2: '. $verify_sign2.PHP_EOL; $public_encrypt_data = 'T2LFtY3dF_b6OBO07BN-3LtMSEBZqDukovDZ4HGCff8wosvlowf6IFJ3U7LFBIeHfiHBKiFuAV8-pFltCfTXtA4AwgVUnwbBMBWBfIJiLDi02ev30V-5BcYEuSF-cEdnSUd7WecrX4rHhzYLueGuj8H6c7RRbSbrJ6_3EFfU-K0';
$private_decrypt_data = RsaUtils::privateDecrypt($public_encrypt_data,$private_key);
echo PHP_EOL;
echo 'private_decrypt_data: '.$private_decrypt_data.PHP_EOL; class RsaUtils{ /**
* 签名算法,SHA256WithRSA
*/
private const SIGNATURE_ALGORITHM = OPENSSL_ALGO_SHA256; /**
* RSA最大加密明文大小
*/
private const MAX_ENCRYPT_BLOCK = 117; /**
* RSA最大解密密文大小
*/
private const MAX_DECRYPT_BLOCK = 128; /**
* 使用公钥将数据加密
* @param $data string 需要加密的数据
* @param $publicKey string 公钥
* @return string 返回加密串(base64编码)
*/
public static function publicEncrypt($data,$publicKey){
$data = str_split($data, self::MAX_ENCRYPT_BLOCK); $encrypted = '';
foreach($data as & $chunk){
if(!openssl_public_encrypt($chunk, $encryptData, $publicKey)){
return '';
}else{
$encrypted .= $encryptData;
}
}
return self::urlSafeBase64encode($encrypted);
} /**
* 使用私钥解密
* @param $data string 需要解密的数据
* @param $privateKey string 私钥
* @return string 返回解密串
*/
public static function privateDecrypt($data,$privateKey){
$data = str_split(self::urlSafeBase64decode($data), self::MAX_DECRYPT_BLOCK); $decrypted = '';
foreach($data as & $chunk){
if(!openssl_private_decrypt($chunk, $decryptData, $privateKey)){
return '';
}else{
$decrypted .= $decryptData;
}
}
return $decrypted;
} /**
* 使用私钥将数据加密
* @param $data string 需要加密的数据
* @param $privateKey string 私钥
* @return string 返回加密串(base64编码)
*/
public static function privateEncrypt($data,$privateKey){
$data = str_split($data, self::MAX_ENCRYPT_BLOCK); $encrypted = '';
foreach($data as & $chunk){
if(!openssl_private_encrypt($chunk, $encryptData, $privateKey)){
return '';
}else{
$encrypted .= $encryptData;
}
}
return self::urlSafeBase64encode($encrypted);
} /**
* 使用公钥解密
* @param $data string 需要解密的数据
* @param $publicKey string 公钥
* @return string 返回解密串
*/
public static function publicDecrypt($data,$publicKey){
$data = str_split(self::urlSafeBase64decode($data), self::MAX_DECRYPT_BLOCK); $decrypted = '';
foreach($data as & $chunk){
if(!openssl_public_decrypt($chunk, $decryptData, $publicKey)){
return '';
}else{
$decrypted .= $decryptData;
}
}
return $decrypted;
} /**
* 私钥加签名
* @param $data 被加签数据
* @param $privateKey 私钥
* @return mixed|string
*/
public static function rsaSign($data, $privateKey){
if(openssl_sign($data, $sign, $privateKey, self::SIGNATURE_ALGORITHM)){
return self::urlSafeBase64encode($sign);
}
return '';
} /**
* 公钥验签
* @param $data 被加签数据
* @param $sign 签名
* @param $publicKey 公钥
* @return bool
*/
public static function verifySign($data, $sign, $publicKey):bool {
return (1 == openssl_verify($data, self::urlSafeBase64decode($sign), $publicKey, self::SIGNATURE_ALGORITHM));
} /**
* url base64编码
* @param $string
* @return mixed|string
*/
public static function urlSafeBase64encode($string){
$data = str_replace(array('+','/','='), array( '-','_',''), base64_encode($string));
return $data;
} /**
* url base64解码
* @param $string
* @return bool|string
*/
public static function urlSafeBase64decode($string){
$data = str_replace(array('-','_'), array('+','/'), $string);
$mod4 = strlen($data) % 4;
if($mod4){
$data .= substr('====', $mod4);
}
return base64_decode($data);
}
}

输出如下:

public encrypt data: WopnO2LnolZ7XpOwA_ktOhfkkaQQJQgkJudk3ZH_-ob36GQFv968nE1UBXxNekA9pIHBcvcl0ZWfwFhk-kyOF2FmQvpPY9LkqiCV0T32vhJet0n93ti2PBoFILxvChjzdOgSG9M0flH78Vm696Q4mHo7VMt_XMoHDTd3Rbagvt8
private decrypt data: i like php
public encrypt data: Fwb5BtLRveCWbx7FkXarl1zVOdwDvbDTl7gv-vPHXpj-T2wm9GlUDn3X0wnHHXkE8cqAT6PcE0g0ide6beP9_ysHMLgnC6wVqkomIKsi6C9TcGd4d6XQBjeJgdgccvDcD-7pcKrV9W-_Z7jkYkwwrjPGPd_uckEHR_cDXyOX4PU
private rsa sign: T-I3KLkBEMRi9YdflyjNZxh_IhEC2mG4vFaq5FeFzs03l7ojtmf3pXFOwjz6qbHUwIJ-tjIMVammfCrYKa0AjMAX_L7-99_EUPmMvmjXS_8z0aZuY5dZPgRCBxklKem56r0qss-iSGTGsh3eivhUiHvtRTBXhtbkpjjlkkqXy-k
public check sign: 1
private decrypt data: i like php
public_decrypt_data: i like java
verifySign1: 1
private_decrypt_data: i like java
verifySign2: 1 private_decrypt_data: i like JS

6.JS版本加解密

var b64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad = "="; var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; //整型转字符串
function int2char(n) {
return BI_RM.charAt(n);
} //十六进制转Base64字符串
function hex2b64(h) {
var i;
var c;
var ret = "";
for (i = 0; i + 3 <= h.length; i += 3) {
c = parseInt(h.substring(i, i + 3), 16);
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63);
}
if (i + 1 == h.length) {
c = parseInt(h.substring(i, i + 1), 16);
ret += b64map.charAt(c << 2);
}
else if (i + 2 == h.length) {
c = parseInt(h.substring(i, i + 2), 16);
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4);
}
while ((ret.length & 3) > 0) {
ret += b64pad;
}
return ret;
} //Base64字符串转十六进制
function b64tohex(s) {
var ret = "";
var i;
var k = 0; // b64 state, 0-3
var slop = 0;
for (i = 0; i < s.length; ++i) {
if (s.charAt(i) == b64pad) {
break;
}
var v = b64map.indexOf(s.charAt(i));
if (v < 0) {
continue;
}
if (k == 0) {
ret += int2char(v >> 2);
slop = v & 3;
k = 1;
}
else if (k == 1) {
ret += int2char((slop << 2) | (v >> 4));
slop = v & 0xf;
k = 2;
}
else if (k == 2) {
ret += int2char(slop);
ret += int2char(v >> 2);
slop = v & 3;
k = 3;
}
else {
ret += int2char((slop << 2) | (v >> 4));
ret += int2char(v & 0xf);
k = 0;
}
}
if (k == 1) {
ret += int2char(slop << 2);
}
return ret;
} //十六进制转字节
function hexToBytes(hex) {
for (var bytes = [], c = 0; c < hex.length; c += 2)
bytes.push(parseInt(hex.substr(c, 2), 16));
return bytes;
} //字节转十六进制
function bytesToHex(bytes) {
for (var hex = [], i = 0; i < bytes.length; i++) {
hex.push((bytes[i] >>> 4).toString(16));
hex.push((bytes[i] & 0xF).toString(16));
}
return hex.join("");
} String.prototype.replaceAllStr=function(f,e){
var reg=new RegExp(f,"g");
return this.replace(reg,e);
} function urlsafeEncode(e) {
return e.replaceAllStr("\\+","-").replaceAllStr("/","_").replaceAllStr("=","");
} function urlsafeDecode(e) {
e = e.replaceAllStr("-","+").replaceAllStr("_","/");
var mob = e.length%4;
if(mob>0){
e += "====".substr(mob);
}
return e;
} //长字符串加密
JSEncrypt.prototype.encryptLong = function (string) {
var k = this.getKey();
//var MAX_ENCRYPT_BLOCK = (((k.n.bitLength() + 7) >> 3) - 11);
var MAX_ENCRYPT_BLOCK = 117; try {
var lt = "";
var ct = "";
//RSA每次加密117bytes,需要辅助方法判断字符串截取位置
//1.获取字符串截取点
var bytes = new Array();
bytes.push(0);
var byteNo = 0;
var len, c;
len = string.length; var temp = 0;
for (var i = 0; i < len; i++) {
c = string.charCodeAt(i);
if (c >= 0x010000 && c <= 0x10FFFF) {
byteNo += 4;
} else if (c >= 0x000800 && c <= 0x00FFFF) {
byteNo += 3;
} else if (c >= 0x000080 && c <= 0x0007FF) {
byteNo += 2;
} else {
byteNo += 1;
}
if ((byteNo % MAX_ENCRYPT_BLOCK) >= 114 || (byteNo % MAX_ENCRYPT_BLOCK) == 0) {
if (byteNo - temp >= 114) {
bytes.push(i);
temp = byteNo;
}
}
} //2.截取字符串并分段加密
if (bytes.length > 1) {
for (var i = 0; i < bytes.length - 1; i++) {
var str;
if (i == 0) {
str = string.substring(0, bytes[i + 1] + 1);
} else {
str = string.substring(bytes[i] + 1, bytes[i + 1] + 1);
}
var t1 = k.encrypt(str);
ct += t1;
}
;
if (bytes[bytes.length - 1] != string.length - 1) {
var lastStr = string.substring(bytes[bytes.length - 1] + 1);
ct += k.encrypt(lastStr);
}
return hex2b64(ct);
}
var t = k.encrypt(string);
var y = hex2b64(t);
return y;
} catch (ex) {
return false;
}
}; //长字符串解密
JSEncrypt.prototype.decryptLong = function (string) {
var k = this.getKey();
// var MAX_DECRYPT_BLOCK = ((k.n.bitLength()+7)>>3);
var MAX_DECRYPT_BLOCK = 128;
try {
var ct = "";
var t1;
var bufTmp;
var hexTmp;
var str = b64tohex(string);
var buf = hexToBytes(str);
var inputLen = buf.length;
//开始长度
var offSet = 0;
//结束长度
var endOffSet = MAX_DECRYPT_BLOCK; //分段加密
while (inputLen - offSet > 0) {
if (inputLen - offSet > MAX_DECRYPT_BLOCK) {
bufTmp = buf.slice(offSet, endOffSet);
hexTmp = bytesToHex(bufTmp);
t1 = k.decrypt(hexTmp);
ct += t1; } else {
bufTmp = buf.slice(offSet, inputLen);
hexTmp = bytesToHex(bufTmp);
t1 = k.decrypt(hexTmp);
ct += t1; }
offSet += MAX_DECRYPT_BLOCK;
endOffSet += MAX_DECRYPT_BLOCK;
}
return ct;
} catch (ex) {
return false;
}
}; // Call this code when the page is done loading.
var publicKeyStr = "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC6BSDlbRplhMMNZBKHX4xe8AwE" +
"SpzHVfAcHHsX9FFSMuF91W3cxgT/g5n+qlLLFzCE3hWG/yX5NMAxR4mS3MlhyXKw" +
"ko3tK9Ua691afod1lxORR3IaZ8nV7v5Bv8y4JDe4E3/f/bQIGzroWiJ0sXTcO41G" +
"qvOw3G9leClSvjVnSwIDAQAB"; var privateKeyStr = "MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBALoFIOVtGmWEww1k" +
"EodfjF7wDARKnMdV8Bwcexf0UVIy4X3VbdzGBP+Dmf6qUssXMITeFYb/Jfk0wDFH" +
"iZLcyWHJcrCSje0r1Rrr3Vp+h3WXE5FHchpnydXu/kG/zLgkN7gTf9/9tAgbOuha" +
"InSxdNw7jUaq87Dcb2V4KVK+NWdLAgMBAAECgYBqCihhgJtOiarjBEvnrZkIOZCw" +
"FZRfsWaJr9afph+BWw3dvH+/HYaV3YA4gwFlUlfPNgZRiTstX1u7+8q51HBa+08h" +
"jPE8Q4GhoUY+sQ9MB8NXA6SWHNPPfMOYIeKEtKmNBdgIbtuhnob3o18rJNFIY+qC" +
"i8djf4om93+AChmo6QJBAO31hd9qem7BnHXsxiMwS+iHlRjW9KxXva2zf+BNURSR" +
"Z19cePReHJGE4v1C731MZlygTB5zKChQ8uZ3JLKJeX8CQQDIH4k/xbuhMb8dMdzl" +
"AYN/CU+MgfWjlgbYjxOnTaLcbs5Mlz9v3/5I/FwqxPvzGuCjHkyh08oFfnQXvzdj" +
"YMA1AkEApjgyOnzzZviBZXJueVgcPiKvSHmm0dg8W+Cd+72mXHqxPdCngPNYe2Ha" +
"+VRPXDQI8LzcTwzbyUW6Vrh0/u2+2wJBAK1rZqx01VuimFLcWue4oBL+JolENXFF" +
"GTmhAw8AIBmVjACjML3qBZmJ1vTZLtxEdlXkc9PojDCmnEPX2E+uD+ECQF2eX4EY" +
"X95HDzQ4cm1kGQudjgfH1gZ+30DIindIHXNAOFpYeAUD7yUQP5tZO8nG38gybPJg" +
"FoadlsSMIQIpksM="; var sourceStr = "i like JS"; //公钥加密
var encrypt = new JSEncrypt();
encrypt.setPublicKey(publicKeyStr);
var encrypted = encrypt.encryptLong(sourceStr);
encrypted = urlsafeEncode(encrypted); //私钥解密
var decrypt = new JSEncrypt();
decrypt.setPrivateKey(privateKeyStr);
var uncrypted = decrypt.decryptLong(urlsafeDecode(encrypted)); console.log("public encrypted: ",encrypted);
console.log("private uncrypted: ",uncrypted);

console.log("private uncrypted: ",decrypt.decryptLong(urlsafeDecode("WopnO2LnolZ7XpOwA_ktOhfkkaQQJQgkJudk3ZH_-ob36GQFv968nE1UBXxNekA9pIHBcvcl0ZWfwFhk-kyOF2FmQvpPY9LkqiCV0T32vhJet0n93ti2PBoFILxvChjzdOgSG9M0flH78Vm696Q4mHo7VMt_XMoHDTd3Rbagvt8")));
  console.log("private uncrypted: ",decrypt.decryptLong(urlsafeDecode("raoQQsfN0KBfPAMRWnxr9kFPvJ6BgQ7PRBCMnz0nWsH03sD4IdlMvKpj78BHe7V7Ga1HZHyDxuJhVaJ0T5qKl8qHXzvKquzNtdMru7G4X9o8ylzkGxJLg-HYCWOrsZ77ZMaKoV9p-TCf-yMI21OpL_5JGot-XNfVVPkmg0z9FW0")));

jsencrypt.js:

 (function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(factory((global.JSEncrypt = {})));
}(this, (function (exports) { 'use strict'; var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
function int2char(n) {
return BI_RM.charAt(n);
}
//#region BIT_OPERATIONS
// (public) this & a
function op_and(x, y) {
return x & y;
}
// (public) this | a
function op_or(x, y) {
return x | y;
}
// (public) this ^ a
function op_xor(x, y) {
return x ^ y;
}
// (public) this & ~a
function op_andnot(x, y) {
return x & ~y;
}
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if (x == 0) {
return -1;
}
var r = 0;
if ((x & 0xffff) == 0) {
x >>= 16;
r += 16;
}
if ((x & 0xff) == 0) {
x >>= 8;
r += 8;
}
if ((x & 0xf) == 0) {
x >>= 4;
r += 4;
}
if ((x & 3) == 0) {
x >>= 2;
r += 2;
}
if ((x & 1) == 0) {
++r;
}
return r;
}
// return number of 1 bits in x
function cbit(x) {
var r = 0;
while (x != 0) {
x &= x - 1;
++r;
}
return r;
}
//#endregion BIT_OPERATIONS var b64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad = "=";
function hex2b64(h) {
var i;
var c;
var ret = "";
for (i = 0; i + 3 <= h.length; i += 3) {
c = parseInt(h.substring(i, i + 3), 16);
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63);
}
if (i + 1 == h.length) {
c = parseInt(h.substring(i, i + 1), 16);
ret += b64map.charAt(c << 2);
}
else if (i + 2 == h.length) {
c = parseInt(h.substring(i, i + 2), 16);
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4);
}
while ((ret.length & 3) > 0) {
ret += b64pad;
}
return ret;
}
// convert a base64 string to hex
function b64tohex(s) {
var ret = "";
var i;
var k = 0; // b64 state, 0-3
var slop = 0;
for (i = 0; i < s.length; ++i) {
if (s.charAt(i) == b64pad) {
break;
}
var v = b64map.indexOf(s.charAt(i));
if (v < 0) {
continue;
}
if (k == 0) {
ret += int2char(v >> 2);
slop = v & 3;
k = 1;
}
else if (k == 1) {
ret += int2char((slop << 2) | (v >> 4));
slop = v & 0xf;
k = 2;
}
else if (k == 2) {
ret += int2char(slop);
ret += int2char(v >> 2);
slop = v & 3;
k = 3;
}
else {
ret += int2char((slop << 2) | (v >> 4));
ret += int2char(v & 0xf);
k = 0;
}
}
if (k == 1) {
ret += int2char(slop << 2);
}
return ret;
} /*! *****************************************************************************
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0 THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABLITY OR NON-INFRINGEMENT. See the Apache Version 2.0 License for specific language governing permissions
and limitations under the License.
***************************************************************************** */
/* global Reflect, Promise */ var extendStatics = function(d, b) {
extendStatics = Object.setPrototypeOf ||
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
return extendStatics(d, b);
}; function __extends(d, b) {
extendStatics(d, b);
function __() { this.constructor = d; }
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
} // Hex JavaScript decoder
// Copyright (c) 2008-2013 Lapo Luchini <lapo@lapo.it>
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */
var decoder;
var Hex = {
decode: function (a) {
var i;
if (decoder === undefined) {
var hex = "0123456789ABCDEF";
var ignore = " \f\n\r\t\u00A0\u2028\u2029";
decoder = {};
for (i = 0; i < 16; ++i) {
decoder[hex.charAt(i)] = i;
}
hex = hex.toLowerCase();
for (i = 10; i < 16; ++i) {
decoder[hex.charAt(i)] = i;
}
for (i = 0; i < ignore.length; ++i) {
decoder[ignore.charAt(i)] = -1;
}
}
var out = [];
var bits = 0;
var char_count = 0;
for (i = 0; i < a.length; ++i) {
var c = a.charAt(i);
if (c == "=") {
break;
}
c = decoder[c];
if (c == -1) {
continue;
}
if (c === undefined) {
throw new Error("Illegal character at offset " + i);
}
bits |= c;
if (++char_count >= 2) {
out[out.length] = bits;
bits = 0;
char_count = 0;
}
else {
bits <<= 4;
}
}
if (char_count) {
throw new Error("Hex encoding incomplete: 4 bits missing");
}
return out;
}
}; // Base64 JavaScript decoder
// Copyright (c) 2008-2013 Lapo Luchini <lapo@lapo.it>
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */
var decoder$1;
var Base64 = {
decode: function (a) {
var i;
if (decoder$1 === undefined) {
var b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var ignore = "= \f\n\r\t\u00A0\u2028\u2029";
decoder$1 = Object.create(null);
for (i = 0; i < 64; ++i) {
decoder$1[b64.charAt(i)] = i;
}
for (i = 0; i < ignore.length; ++i) {
decoder$1[ignore.charAt(i)] = -1;
}
}
var out = [];
var bits = 0;
var char_count = 0;
for (i = 0; i < a.length; ++i) {
var c = a.charAt(i);
if (c == "=") {
break;
}
c = decoder$1[c];
if (c == -1) {
continue;
}
if (c === undefined) {
throw new Error("Illegal character at offset " + i);
}
bits |= c;
if (++char_count >= 4) {
out[out.length] = (bits >> 16);
out[out.length] = (bits >> 8) & 0xFF;
out[out.length] = bits & 0xFF;
bits = 0;
char_count = 0;
}
else {
bits <<= 6;
}
}
switch (char_count) {
case 1:
throw new Error("Base64 encoding incomplete: at least 2 bits missing");
case 2:
out[out.length] = (bits >> 10);
break;
case 3:
out[out.length] = (bits >> 16);
out[out.length] = (bits >> 8) & 0xFF;
break;
}
return out;
},
re: /-----BEGIN [^-]+-----([A-Za-z0-9+\/=\s]+)-----END [^-]+-----|begin-base64[^\n]+\n([A-Za-z0-9+\/=\s]+)====/,
unarmor: function (a) {
var m = Base64.re.exec(a);
if (m) {
if (m[1]) {
a = m[1];
}
else if (m[2]) {
a = m[2];
}
else {
throw new Error("RegExp out of sync");
}
}
return Base64.decode(a);
}
}; // Big integer base-10 printing library
// Copyright (c) 2014 Lapo Luchini <lapo@lapo.it>
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */
var max = 10000000000000; // biggest integer that can still fit 2^53 when multiplied by 256
var Int10 = /** @class */ (function () {
function Int10(value) {
this.buf = [+value || 0];
}
Int10.prototype.mulAdd = function (m, c) {
// assert(m <= 256)
var b = this.buf;
var l = b.length;
var i;
var t;
for (i = 0; i < l; ++i) {
t = b[i] * m + c;
if (t < max) {
c = 0;
}
else {
c = 0 | (t / max);
t -= c * max;
}
b[i] = t;
}
if (c > 0) {
b[i] = c;
}
};
Int10.prototype.sub = function (c) {
// assert(m <= 256)
var b = this.buf;
var l = b.length;
var i;
var t;
for (i = 0; i < l; ++i) {
t = b[i] - c;
if (t < 0) {
t += max;
c = 1;
}
else {
c = 0;
}
b[i] = t;
}
while (b[b.length - 1] === 0) {
b.pop();
}
};
Int10.prototype.toString = function (base) {
if ((base || 10) != 10) {
throw new Error("only base 10 is supported");
}
var b = this.buf;
var s = b[b.length - 1].toString();
for (var i = b.length - 2; i >= 0; --i) {
s += (max + b[i]).toString().substring(1);
}
return s;
};
Int10.prototype.valueOf = function () {
var b = this.buf;
var v = 0;
for (var i = b.length - 1; i >= 0; --i) {
v = v * max + b[i];
}
return v;
};
Int10.prototype.simplify = function () {
var b = this.buf;
return (b.length == 1) ? b[0] : this;
};
return Int10;
}()); // ASN.1 JavaScript decoder
var ellipsis = "\u2026";
var reTimeS = /^(\d\d)(0[1-9]|1[0-2])(0[1-9]|[12]\d|3[01])([01]\d|2[0-3])(?:([0-5]\d)(?:([0-5]\d)(?:[.,](\d{1,3}))?)?)?(Z|[-+](?:[0]\d|1[0-2])([0-5]\d)?)?$/;
var reTimeL = /^(\d\d\d\d)(0[1-9]|1[0-2])(0[1-9]|[12]\d|3[01])([01]\d|2[0-3])(?:([0-5]\d)(?:([0-5]\d)(?:[.,](\d{1,3}))?)?)?(Z|[-+](?:[0]\d|1[0-2])([0-5]\d)?)?$/;
function stringCut(str, len) {
if (str.length > len) {
str = str.substring(0, len) + ellipsis;
}
return str;
}
var Stream = /** @class */ (function () {
function Stream(enc, pos) {
this.hexDigits = "0123456789ABCDEF";
if (enc instanceof Stream) {
this.enc = enc.enc;
this.pos = enc.pos;
}
else {
// enc should be an array or a binary string
this.enc = enc;
this.pos = pos;
}
}
Stream.prototype.get = function (pos) {
if (pos === undefined) {
pos = this.pos++;
}
if (pos >= this.enc.length) {
throw new Error("Requesting byte offset " + pos + " on a stream of length " + this.enc.length);
}
return ("string" === typeof this.enc) ? this.enc.charCodeAt(pos) : this.enc[pos];
};
Stream.prototype.hexByte = function (b) {
return this.hexDigits.charAt((b >> 4) & 0xF) + this.hexDigits.charAt(b & 0xF);
};
Stream.prototype.hexDump = function (start, end, raw) {
var s = "";
for (var i = start; i < end; ++i) {
s += this.hexByte(this.get(i));
if (raw !== true) {
switch (i & 0xF) {
case 0x7:
s += " ";
break;
case 0xF:
s += "\n";
break;
default:
s += " ";
}
}
}
return s;
};
Stream.prototype.isASCII = function (start, end) {
for (var i = start; i < end; ++i) {
var c = this.get(i);
if (c < 32 || c > 176) {
return false;
}
}
return true;
};
Stream.prototype.parseStringISO = function (start, end) {
var s = "";
for (var i = start; i < end; ++i) {
s += String.fromCharCode(this.get(i));
}
return s;
};
Stream.prototype.parseStringUTF = function (start, end) {
var s = "";
for (var i = start; i < end;) {
var c = this.get(i++);
if (c < 128) {
s += String.fromCharCode(c);
}
else if ((c > 191) && (c < 224)) {
s += String.fromCharCode(((c & 0x1F) << 6) | (this.get(i++) & 0x3F));
}
else {
s += String.fromCharCode(((c & 0x0F) << 12) | ((this.get(i++) & 0x3F) << 6) | (this.get(i++) & 0x3F));
}
}
return s;
};
Stream.prototype.parseStringBMP = function (start, end) {
var str = "";
var hi;
var lo;
for (var i = start; i < end;) {
hi = this.get(i++);
lo = this.get(i++);
str += String.fromCharCode((hi << 8) | lo);
}
return str;
};
Stream.prototype.parseTime = function (start, end, shortYear) {
var s = this.parseStringISO(start, end);
var m = (shortYear ? reTimeS : reTimeL).exec(s);
if (!m) {
return "Unrecognized time: " + s;
}
if (shortYear) {
// to avoid querying the timer, use the fixed range [1970, 2069]
// it will conform with ITU X.400 [-10, +40] sliding window until 2030
m[1] = +m[1];
m[1] += (+m[1] < 70) ? 2000 : 1900;
}
s = m[1] + "-" + m[2] + "-" + m[3] + " " + m[4];
if (m[5]) {
s += ":" + m[5];
if (m[6]) {
s += ":" + m[6];
if (m[7]) {
s += "." + m[7];
}
}
}
if (m[8]) {
s += " UTC";
if (m[8] != "Z") {
s += m[8];
if (m[9]) {
s += ":" + m[9];
}
}
}
return s;
};
Stream.prototype.parseInteger = function (start, end) {
var v = this.get(start);
var neg = (v > 127);
var pad = neg ? 255 : 0;
var len;
var s = "";
// skip unuseful bits (not allowed in DER)
while (v == pad && ++start < end) {
v = this.get(start);
}
len = end - start;
if (len === 0) {
return neg ? -1 : 0;
}
// show bit length of huge integers
if (len > 4) {
s = v;
len <<= 3;
while (((+s ^ pad) & 0x80) == 0) {
s = +s << 1;
--len;
}
s = "(" + len + " bit)\n";
}
// decode the integer
if (neg) {
v = v - 256;
}
var n = new Int10(v);
for (var i = start + 1; i < end; ++i) {
n.mulAdd(256, this.get(i));
}
return s + n.toString();
};
Stream.prototype.parseBitString = function (start, end, maxLength) {
var unusedBit = this.get(start);
var lenBit = ((end - start - 1) << 3) - unusedBit;
var intro = "(" + lenBit + " bit)\n";
var s = "";
for (var i = start + 1; i < end; ++i) {
var b = this.get(i);
var skip = (i == end - 1) ? unusedBit : 0;
for (var j = 7; j >= skip; --j) {
s += (b >> j) & 1 ? "1" : "0";
}
if (s.length > maxLength) {
return intro + stringCut(s, maxLength);
}
}
return intro + s;
};
Stream.prototype.parseOctetString = function (start, end, maxLength) {
if (this.isASCII(start, end)) {
return stringCut(this.parseStringISO(start, end), maxLength);
}
var len = end - start;
var s = "(" + len + " byte)\n";
maxLength /= 2; // we work in bytes
if (len > maxLength) {
end = start + maxLength;
}
for (var i = start; i < end; ++i) {
s += this.hexByte(this.get(i));
}
if (len > maxLength) {
s += ellipsis;
}
return s;
};
Stream.prototype.parseOID = function (start, end, maxLength) {
var s = "";
var n = new Int10();
var bits = 0;
for (var i = start; i < end; ++i) {
var v = this.get(i);
n.mulAdd(128, v & 0x7F);
bits += 7;
if (!(v & 0x80)) { // finished
if (s === "") {
n = n.simplify();
if (n instanceof Int10) {
n.sub(80);
s = "2." + n.toString();
}
else {
var m = n < 80 ? n < 40 ? 0 : 1 : 2;
s = m + "." + (n - m * 40);
}
}
else {
s += "." + n.toString();
}
if (s.length > maxLength) {
return stringCut(s, maxLength);
}
n = new Int10();
bits = 0;
}
}
if (bits > 0) {
s += ".incomplete";
}
return s;
};
return Stream;
}());
var ASN1 = /** @class */ (function () {
function ASN1(stream, header, length, tag, sub) {
if (!(tag instanceof ASN1Tag)) {
throw new Error("Invalid tag value.");
}
this.stream = stream;
this.header = header;
this.length = length;
this.tag = tag;
this.sub = sub;
}
ASN1.prototype.typeName = function () {
switch (this.tag.tagClass) {
case 0: // universal
switch (this.tag.tagNumber) {
case 0x00:
return "EOC";
case 0x01:
return "BOOLEAN";
case 0x02:
return "INTEGER";
case 0x03:
return "BIT_STRING";
case 0x04:
return "OCTET_STRING";
case 0x05:
return "NULL";
case 0x06:
return "OBJECT_IDENTIFIER";
case 0x07:
return "ObjectDescriptor";
case 0x08:
return "EXTERNAL";
case 0x09:
return "REAL";
case 0x0A:
return "ENUMERATED";
case 0x0B:
return "EMBEDDED_PDV";
case 0x0C:
return "UTF8String";
case 0x10:
return "SEQUENCE";
case 0x11:
return "SET";
case 0x12:
return "NumericString";
case 0x13:
return "PrintableString"; // ASCII subset
case 0x14:
return "TeletexString"; // aka T61String
case 0x15:
return "VideotexString";
case 0x16:
return "IA5String"; // ASCII
case 0x17:
return "UTCTime";
case 0x18:
return "GeneralizedTime";
case 0x19:
return "GraphicString";
case 0x1A:
return "VisibleString"; // ASCII subset
case 0x1B:
return "GeneralString";
case 0x1C:
return "UniversalString";
case 0x1E:
return "BMPString";
}
return "Universal_" + this.tag.tagNumber.toString();
case 1:
return "Application_" + this.tag.tagNumber.toString();
case 2:
return "[" + this.tag.tagNumber.toString() + "]"; // Context
case 3:
return "Private_" + this.tag.tagNumber.toString();
}
};
ASN1.prototype.content = function (maxLength) {
if (this.tag === undefined) {
return null;
}
if (maxLength === undefined) {
maxLength = Infinity;
}
var content = this.posContent();
var len = Math.abs(this.length);
if (!this.tag.isUniversal()) {
if (this.sub !== null) {
return "(" + this.sub.length + " elem)";
}
return this.stream.parseOctetString(content, content + len, maxLength);
}
switch (this.tag.tagNumber) {
case 0x01: // BOOLEAN
return (this.stream.get(content) === 0) ? "false" : "true";
case 0x02: // INTEGER
return this.stream.parseInteger(content, content + len);
case 0x03: // BIT_STRING
return this.sub ? "(" + this.sub.length + " elem)" :
this.stream.parseBitString(content, content + len, maxLength);
case 0x04: // OCTET_STRING
return this.sub ? "(" + this.sub.length + " elem)" :
this.stream.parseOctetString(content, content + len, maxLength);
// case 0x05: // NULL
case 0x06: // OBJECT_IDENTIFIER
return this.stream.parseOID(content, content + len, maxLength);
// case 0x07: // ObjectDescriptor
// case 0x08: // EXTERNAL
// case 0x09: // REAL
// case 0x0A: // ENUMERATED
// case 0x0B: // EMBEDDED_PDV
case 0x10: // SEQUENCE
case 0x11: // SET
if (this.sub !== null) {
return "(" + this.sub.length + " elem)";
}
else {
return "(no elem)";
}
case 0x0C: // UTF8String
return stringCut(this.stream.parseStringUTF(content, content + len), maxLength);
case 0x12: // NumericString
case 0x13: // PrintableString
case 0x14: // TeletexString
case 0x15: // VideotexString
case 0x16: // IA5String
// case 0x19: // GraphicString
case 0x1A: // VisibleString
// case 0x1B: // GeneralString
// case 0x1C: // UniversalString
return stringCut(this.stream.parseStringISO(content, content + len), maxLength);
case 0x1E: // BMPString
return stringCut(this.stream.parseStringBMP(content, content + len), maxLength);
case 0x17: // UTCTime
case 0x18: // GeneralizedTime
return this.stream.parseTime(content, content + len, (this.tag.tagNumber == 0x17));
}
return null;
};
ASN1.prototype.toString = function () {
return this.typeName() + "@" + this.stream.pos + "[header:" + this.header + ",length:" + this.length + ",sub:" + ((this.sub === null) ? "null" : this.sub.length) + "]";
};
ASN1.prototype.toPrettyString = function (indent) {
if (indent === undefined) {
indent = "";
}
var s = indent + this.typeName() + " @" + this.stream.pos;
if (this.length >= 0) {
s += "+";
}
s += this.length;
if (this.tag.tagConstructed) {
s += " (constructed)";
}
else if ((this.tag.isUniversal() && ((this.tag.tagNumber == 0x03) || (this.tag.tagNumber == 0x04))) && (this.sub !== null)) {
s += " (encapsulates)";
}
s += "\n";
if (this.sub !== null) {
indent += " ";
for (var i = 0, max = this.sub.length; i < max; ++i) {
s += this.sub[i].toPrettyString(indent);
}
}
return s;
};
ASN1.prototype.posStart = function () {
return this.stream.pos;
};
ASN1.prototype.posContent = function () {
return this.stream.pos + this.header;
};
ASN1.prototype.posEnd = function () {
return this.stream.pos + this.header + Math.abs(this.length);
};
ASN1.prototype.toHexString = function () {
return this.stream.hexDump(this.posStart(), this.posEnd(), true);
};
ASN1.decodeLength = function (stream) {
var buf = stream.get();
var len = buf & 0x7F;
if (len == buf) {
return len;
}
// no reason to use Int10, as it would be a huge buffer anyways
if (len > 6) {
throw new Error("Length over 48 bits not supported at position " + (stream.pos - 1));
}
if (len === 0) {
return null;
} // undefined
buf = 0;
for (var i = 0; i < len; ++i) {
buf = (buf * 256) + stream.get();
}
return buf;
};
/**
* Retrieve the hexadecimal value (as a string) of the current ASN.1 element
* @returns {string}
* @public
*/
ASN1.prototype.getHexStringValue = function () {
var hexString = this.toHexString();
var offset = this.header * 2;
var length = this.length * 2;
return hexString.substr(offset, length);
};
ASN1.decode = function (str) {
var stream;
if (!(str instanceof Stream)) {
stream = new Stream(str, 0);
}
else {
stream = str;
}
var streamStart = new Stream(stream);
var tag = new ASN1Tag(stream);
var len = ASN1.decodeLength(stream);
var start = stream.pos;
var header = start - streamStart.pos;
var sub = null;
var getSub = function () {
var ret = [];
if (len !== null) {
// definite length
var end = start + len;
while (stream.pos < end) {
ret[ret.length] = ASN1.decode(stream);
}
if (stream.pos != end) {
throw new Error("Content size is not correct for container starting at offset " + start);
}
}
else {
// undefined length
try {
for (;;) {
var s = ASN1.decode(stream);
if (s.tag.isEOC()) {
break;
}
ret[ret.length] = s;
}
len = start - stream.pos; // undefined lengths are represented as negative values
}
catch (e) {
throw new Error("Exception while decoding undefined length content: " + e);
}
}
return ret;
};
if (tag.tagConstructed) {
// must have valid content
sub = getSub();
}
else if (tag.isUniversal() && ((tag.tagNumber == 0x03) || (tag.tagNumber == 0x04))) {
// sometimes BitString and OctetString are used to encapsulate ASN.1
try {
if (tag.tagNumber == 0x03) {
if (stream.get() != 0) {
throw new Error("BIT STRINGs with unused bits cannot encapsulate.");
}
}
sub = getSub();
for (var i = 0; i < sub.length; ++i) {
if (sub[i].tag.isEOC()) {
throw new Error("EOC is not supposed to be actual content.");
}
}
}
catch (e) {
// but silently ignore when they don't
sub = null;
}
}
if (sub === null) {
if (len === null) {
throw new Error("We can't skip over an invalid tag with undefined length at offset " + start);
}
stream.pos = start + Math.abs(len);
}
return new ASN1(streamStart, header, len, tag, sub);
};
return ASN1;
}());
var ASN1Tag = /** @class */ (function () {
function ASN1Tag(stream) {
var buf = stream.get();
this.tagClass = buf >> 6;
this.tagConstructed = ((buf & 0x20) !== 0);
this.tagNumber = buf & 0x1F;
if (this.tagNumber == 0x1F) { // long tag
var n = new Int10();
do {
buf = stream.get();
n.mulAdd(128, buf & 0x7F);
} while (buf & 0x80);
this.tagNumber = n.simplify();
}
}
ASN1Tag.prototype.isUniversal = function () {
return this.tagClass === 0x00;
};
ASN1Tag.prototype.isEOC = function () {
return this.tagClass === 0x00 && this.tagNumber === 0x00;
};
return ASN1Tag;
}()); // Copyright (c) 2005 Tom Wu
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary & 0xffffff) == 0xefcafe);
//#region
var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997];
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
//#endregion
// (public) Constructor
var BigInteger = /** @class */ (function () {
function BigInteger(a, b, c) {
if (a != null) {
if ("number" == typeof a) {
this.fromNumber(a, b, c);
}
else if (b == null && "string" != typeof a) {
this.fromString(a, 256);
}
else {
this.fromString(a, b);
}
}
}
//#region PUBLIC
// BigInteger.prototype.toString = bnToString;
// (public) return string representation in given radix
BigInteger.prototype.toString = function (b) {
if (this.s < 0) {
return "-" + this.negate().toString(b);
}
var k;
if (b == 16) {
k = 4;
}
else if (b == 8) {
k = 3;
}
else if (b == 2) {
k = 1;
}
else if (b == 32) {
k = 5;
}
else if (b == 4) {
k = 2;
}
else {
return this.toRadix(b);
}
var km = (1 << k) - 1;
var d;
var m = false;
var r = "";
var i = this.t;
var p = this.DB - (i * this.DB) % k;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) {
m = true;
r = int2char(d);
}
while (i >= 0) {
if (p < k) {
d = (this[i] & ((1 << p) - 1)) << (k - p);
d |= this[--i] >> (p += this.DB - k);
}
else {
d = (this[i] >> (p -= k)) & km;
if (p <= 0) {
p += this.DB;
--i;
}
}
if (d > 0) {
m = true;
}
if (m) {
r += int2char(d);
}
}
}
return m ? r : "0";
};
// BigInteger.prototype.negate = bnNegate;
// (public) -this
BigInteger.prototype.negate = function () {
var r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
};
// BigInteger.prototype.abs = bnAbs;
// (public) |this|
BigInteger.prototype.abs = function () {
return (this.s < 0) ? this.negate() : this;
};
// BigInteger.prototype.compareTo = bnCompareTo;
// (public) return + if this > a, - if this < a, 0 if equal
BigInteger.prototype.compareTo = function (a) {
var r = this.s - a.s;
if (r != 0) {
return r;
}
var i = this.t;
r = i - a.t;
if (r != 0) {
return (this.s < 0) ? -r : r;
}
while (--i >= 0) {
if ((r = this[i] - a[i]) != 0) {
return r;
}
}
return 0;
};
// BigInteger.prototype.bitLength = bnBitLength;
// (public) return the number of bits in "this"
BigInteger.prototype.bitLength = function () {
if (this.t <= 0) {
return 0;
}
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
};
// BigInteger.prototype.mod = bnMod;
// (public) this mod a
BigInteger.prototype.mod = function (a) {
var r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) {
a.subTo(r, r);
}
return r;
};
// BigInteger.prototype.modPowInt = bnModPowInt;
// (public) this^e % m, 0 <= e < 2^32
BigInteger.prototype.modPowInt = function (e, m) {
var z;
if (e < 256 || m.isEven()) {
z = new Classic(m);
}
else {
z = new Montgomery(m);
}
return this.exp(e, z);
};
// BigInteger.prototype.clone = bnClone;
// (public)
BigInteger.prototype.clone = function () {
var r = nbi();
this.copyTo(r);
return r;
};
// BigInteger.prototype.intValue = bnIntValue;
// (public) return value as integer
BigInteger.prototype.intValue = function () {
if (this.s < 0) {
if (this.t == 1) {
return this[0] - this.DV;
}
else if (this.t == 0) {
return -1;
}
}
else if (this.t == 1) {
return this[0];
}
else if (this.t == 0) {
return 0;
}
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
};
// BigInteger.prototype.byteValue = bnByteValue;
// (public) return value as byte
BigInteger.prototype.byteValue = function () {
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
};
// BigInteger.prototype.shortValue = bnShortValue;
// (public) return value as short (assumes DB>=16)
BigInteger.prototype.shortValue = function () {
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
};
// BigInteger.prototype.signum = bnSigNum;
// (public) 0 if this == 0, 1 if this > 0
BigInteger.prototype.signum = function () {
if (this.s < 0) {
return -1;
}
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) {
return 0;
}
else {
return 1;
}
};
// BigInteger.prototype.toByteArray = bnToByteArray;
// (public) convert to bigendian byte array
BigInteger.prototype.toByteArray = function () {
var i = this.t;
var r = [];
r[0] = this.s;
var p = this.DB - (i * this.DB) % 8;
var d;
var k = 0;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) {
r[k++] = d | (this.s << (this.DB - p));
}
while (i >= 0) {
if (p < 8) {
d = (this[i] & ((1 << p) - 1)) << (8 - p);
d |= this[--i] >> (p += this.DB - 8);
}
else {
d = (this[i] >> (p -= 8)) & 0xff;
if (p <= 0) {
p += this.DB;
--i;
}
}
if ((d & 0x80) != 0) {
d |= -256;
}
if (k == 0 && (this.s & 0x80) != (d & 0x80)) {
++k;
}
if (k > 0 || d != this.s) {
r[k++] = d;
}
}
}
return r;
};
// BigInteger.prototype.equals = bnEquals;
BigInteger.prototype.equals = function (a) {
return (this.compareTo(a) == 0);
};
// BigInteger.prototype.min = bnMin;
BigInteger.prototype.min = function (a) {
return (this.compareTo(a) < 0) ? this : a;
};
// BigInteger.prototype.max = bnMax;
BigInteger.prototype.max = function (a) {
return (this.compareTo(a) > 0) ? this : a;
};
// BigInteger.prototype.and = bnAnd;
BigInteger.prototype.and = function (a) {
var r = nbi();
this.bitwiseTo(a, op_and, r);
return r;
};
// BigInteger.prototype.or = bnOr;
BigInteger.prototype.or = function (a) {
var r = nbi();
this.bitwiseTo(a, op_or, r);
return r;
};
// BigInteger.prototype.xor = bnXor;
BigInteger.prototype.xor = function (a) {
var r = nbi();
this.bitwiseTo(a, op_xor, r);
return r;
};
// BigInteger.prototype.andNot = bnAndNot;
BigInteger.prototype.andNot = function (a) {
var r = nbi();
this.bitwiseTo(a, op_andnot, r);
return r;
};
// BigInteger.prototype.not = bnNot;
// (public) ~this
BigInteger.prototype.not = function () {
var r = nbi();
for (var i = 0; i < this.t; ++i) {
r[i] = this.DM & ~this[i];
}
r.t = this.t;
r.s = ~this.s;
return r;
};
// BigInteger.prototype.shiftLeft = bnShiftLeft;
// (public) this << n
BigInteger.prototype.shiftLeft = function (n) {
var r = nbi();
if (n < 0) {
this.rShiftTo(-n, r);
}
else {
this.lShiftTo(n, r);
}
return r;
};
// BigInteger.prototype.shiftRight = bnShiftRight;
// (public) this >> n
BigInteger.prototype.shiftRight = function (n) {
var r = nbi();
if (n < 0) {
this.lShiftTo(-n, r);
}
else {
this.rShiftTo(n, r);
}
return r;
};
// BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
// (public) returns index of lowest 1-bit (or -1 if none)
BigInteger.prototype.getLowestSetBit = function () {
for (var i = 0; i < this.t; ++i) {
if (this[i] != 0) {
return i * this.DB + lbit(this[i]);
}
}
if (this.s < 0) {
return this.t * this.DB;
}
return -1;
};
// BigInteger.prototype.bitCount = bnBitCount;
// (public) return number of set bits
BigInteger.prototype.bitCount = function () {
var r = 0;
var x = this.s & this.DM;
for (var i = 0; i < this.t; ++i) {
r += cbit(this[i] ^ x);
}
return r;
};
// BigInteger.prototype.testBit = bnTestBit;
// (public) true iff nth bit is set
BigInteger.prototype.testBit = function (n) {
var j = Math.floor(n / this.DB);
if (j >= this.t) {
return (this.s != 0);
}
return ((this[j] & (1 << (n % this.DB))) != 0);
};
// BigInteger.prototype.setBit = bnSetBit;
// (public) this | (1<<n)
BigInteger.prototype.setBit = function (n) {
return this.changeBit(n, op_or);
};
// BigInteger.prototype.clearBit = bnClearBit;
// (public) this & ~(1<<n)
BigInteger.prototype.clearBit = function (n) {
return this.changeBit(n, op_andnot);
};
// BigInteger.prototype.flipBit = bnFlipBit;
// (public) this ^ (1<<n)
BigInteger.prototype.flipBit = function (n) {
return this.changeBit(n, op_xor);
};
// BigInteger.prototype.add = bnAdd;
// (public) this + a
BigInteger.prototype.add = function (a) {
var r = nbi();
this.addTo(a, r);
return r;
};
// BigInteger.prototype.subtract = bnSubtract;
// (public) this - a
BigInteger.prototype.subtract = function (a) {
var r = nbi();
this.subTo(a, r);
return r;
};
// BigInteger.prototype.multiply = bnMultiply;
// (public) this * a
BigInteger.prototype.multiply = function (a) {
var r = nbi();
this.multiplyTo(a, r);
return r;
};
// BigInteger.prototype.divide = bnDivide;
// (public) this / a
BigInteger.prototype.divide = function (a) {
var r = nbi();
this.divRemTo(a, r, null);
return r;
};
// BigInteger.prototype.remainder = bnRemainder;
// (public) this % a
BigInteger.prototype.remainder = function (a) {
var r = nbi();
this.divRemTo(a, null, r);
return r;
};
// BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
// (public) [this/a,this%a]
BigInteger.prototype.divideAndRemainder = function (a) {
var q = nbi();
var r = nbi();
this.divRemTo(a, q, r);
return [q, r];
};
// BigInteger.prototype.modPow = bnModPow;
// (public) this^e % m (HAC 14.85)
BigInteger.prototype.modPow = function (e, m) {
var i = e.bitLength();
var k;
var r = nbv(1);
var z;
if (i <= 0) {
return r;
}
else if (i < 18) {
k = 1;
}
else if (i < 48) {
k = 3;
}
else if (i < 144) {
k = 4;
}
else if (i < 768) {
k = 5;
}
else {
k = 6;
}
if (i < 8) {
z = new Classic(m);
}
else if (m.isEven()) {
z = new Barrett(m);
}
else {
z = new Montgomery(m);
}
// precomputation
var g = [];
var n = 3;
var k1 = k - 1;
var km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1) {
var g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km) {
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
var j = e.t - 1;
var w;
var is1 = true;
var r2 = nbi();
var t;
i = nbits(e[j]) - 1;
while (j >= 0) {
if (i >= k1) {
w = (e[j] >> (i - k1)) & km;
}
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
if (j > 0) {
w |= e[j - 1] >> (this.DB + i - k1);
}
}
n = k;
while ((w & 1) == 0) {
w >>= 1;
--n;
}
if ((i -= n) < 0) {
i += this.DB;
--j;
}
if (is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
}
else {
while (n > 1) {
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) {
z.sqrTo(r, r2);
}
else {
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0) {
i = this.DB - 1;
--j;
}
}
}
return z.revert(r);
};
// BigInteger.prototype.modInverse = bnModInverse;
// (public) 1/this % m (HAC 14.61)
BigInteger.prototype.modInverse = function (m) {
var ac = m.isEven();
if ((this.isEven() && ac) || m.signum() == 0) {
return BigInteger.ZERO;
}
var u = m.clone();
var v = this.clone();
var a = nbv(1);
var b = nbv(0);
var c = nbv(0);
var d = nbv(1);
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u);
if (ac) {
if (!a.isEven() || !b.isEven()) {
a.addTo(this, a);
b.subTo(m, b);
}
a.rShiftTo(1, a);
}
else if (!b.isEven()) {
b.subTo(m, b);
}
b.rShiftTo(1, b);
}
while (v.isEven()) {
v.rShiftTo(1, v);
if (ac) {
if (!c.isEven() || !d.isEven()) {
c.addTo(this, c);
d.subTo(m, d);
}
c.rShiftTo(1, c);
}
else if (!d.isEven()) {
d.subTo(m, d);
}
d.rShiftTo(1, d);
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u);
if (ac) {
a.subTo(c, a);
}
b.subTo(d, b);
}
else {
v.subTo(u, v);
if (ac) {
c.subTo(a, c);
}
d.subTo(b, d);
}
}
if (v.compareTo(BigInteger.ONE) != 0) {
return BigInteger.ZERO;
}
if (d.compareTo(m) >= 0) {
return d.subtract(m);
}
if (d.signum() < 0) {
d.addTo(m, d);
}
else {
return d;
}
if (d.signum() < 0) {
return d.add(m);
}
else {
return d;
}
};
// BigInteger.prototype.pow = bnPow;
// (public) this^e
BigInteger.prototype.pow = function (e) {
return this.exp(e, new NullExp());
};
// BigInteger.prototype.gcd = bnGCD;
// (public) gcd(this,a) (HAC 14.54)
BigInteger.prototype.gcd = function (a) {
var x = (this.s < 0) ? this.negate() : this.clone();
var y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
var t = x;
x = y;
y = t;
}
var i = x.getLowestSetBit();
var g = y.getLowestSetBit();
if (g < 0) {
return x;
}
if (i < g) {
g = i;
}
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) {
x.rShiftTo(i, x);
}
if ((i = y.getLowestSetBit()) > 0) {
y.rShiftTo(i, y);
}
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
}
else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
}
if (g > 0) {
y.lShiftTo(g, y);
}
return y;
};
// BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
// (public) test primality with certainty >= 1-.5^t
BigInteger.prototype.isProbablePrime = function (t) {
var i;
var x = this.abs();
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i) {
if (x[0] == lowprimes[i]) {
return true;
}
}
return false;
}
if (x.isEven()) {
return false;
}
i = 1;
while (i < lowprimes.length) {
var m = lowprimes[i];
var j = i + 1;
while (j < lowprimes.length && m < lplim) {
m *= lowprimes[j++];
}
m = x.modInt(m);
while (i < j) {
if (m % lowprimes[i++] == 0) {
return false;
}
}
}
return x.millerRabin(t);
};
//#endregion PUBLIC
//#region PROTECTED
// BigInteger.prototype.copyTo = bnpCopyTo;
// (protected) copy this to r
BigInteger.prototype.copyTo = function (r) {
for (var i = this.t - 1; i >= 0; --i) {
r[i] = this[i];
}
r.t = this.t;
r.s = this.s;
};
// BigInteger.prototype.fromInt = bnpFromInt;
// (protected) set from integer value x, -DV <= x < DV
BigInteger.prototype.fromInt = function (x) {
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) {
this[0] = x;
}
else if (x < -1) {
this[0] = x + this.DV;
}
else {
this.t = 0;
}
};
// BigInteger.prototype.fromString = bnpFromString;
// (protected) set from string and radix
BigInteger.prototype.fromString = function (s, b) {
var k;
if (b == 16) {
k = 4;
}
else if (b == 8) {
k = 3;
}
else if (b == 256) {
k = 8;
/* byte array */
}
else if (b == 2) {
k = 1;
}
else if (b == 32) {
k = 5;
}
else if (b == 4) {
k = 2;
}
else {
this.fromRadix(s, b);
return;
}
this.t = 0;
this.s = 0;
var i = s.length;
var mi = false;
var sh = 0;
while (--i >= 0) {
var x = (k == 8) ? (+s[i]) & 0xff : intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") {
mi = true;
}
continue;
}
mi = false;
if (sh == 0) {
this[this.t++] = x;
}
else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = (x >> (this.DB - sh));
}
else {
this[this.t - 1] |= x << sh;
}
sh += k;
if (sh >= this.DB) {
sh -= this.DB;
}
}
if (k == 8 && ((+s[0]) & 0x80) != 0) {
this.s = -1;
if (sh > 0) {
this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
}
this.clamp();
if (mi) {
BigInteger.ZERO.subTo(this, this);
}
};
// BigInteger.prototype.clamp = bnpClamp;
// (protected) clamp off excess high words
BigInteger.prototype.clamp = function () {
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) {
--this.t;
}
};
// BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
// (protected) r = this << n*DB
BigInteger.prototype.dlShiftTo = function (n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) {
r[i + n] = this[i];
}
for (i = n - 1; i >= 0; --i) {
r[i] = 0;
}
r.t = this.t + n;
r.s = this.s;
};
// BigInteger.prototype.drShiftTo = bnpDRShiftTo;
// (protected) r = this >> n*DB
BigInteger.prototype.drShiftTo = function (n, r) {
for (var i = n; i < this.t; ++i) {
r[i - n] = this[i];
}
r.t = Math.max(this.t - n, 0);
r.s = this.s;
};
// BigInteger.prototype.lShiftTo = bnpLShiftTo;
// (protected) r = this << n
BigInteger.prototype.lShiftTo = function (n, r) {
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB);
var c = (this.s << bs) & this.DM;
for (var i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (var i = ds - 1; i >= 0; --i) {
r[i] = 0;
}
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
};
// BigInteger.prototype.rShiftTo = bnpRShiftTo;
// (protected) r = this >> n
BigInteger.prototype.rShiftTo = function (n, r) {
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t) {
r.t = 0;
return;
}
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) {
r[this.t - ds - 1] |= (this.s & bm) << cbs;
}
r.t = this.t - ds;
r.clamp();
};
// BigInteger.prototype.subTo = bnpSubTo;
// (protected) r = this - a
BigInteger.prototype.subTo = function (a, r) {
var i = 0;
var c = 0;
var m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c -= a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while (i < a.t) {
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c < -1) {
r[i++] = this.DV + c;
}
else if (c > 0) {
r[i++] = c;
}
r.t = i;
r.clamp();
};
// BigInteger.prototype.multiplyTo = bnpMultiplyTo;
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyTo = function (a, r) {
var x = this.abs();
var y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) {
r[i] = 0;
}
for (i = 0; i < y.t; ++i) {
r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
}
r.s = 0;
r.clamp();
if (this.s != a.s) {
BigInteger.ZERO.subTo(r, r);
}
};
// BigInteger.prototype.squareTo = bnpSquareTo;
// (protected) r = this^2, r != this (HAC 14.16)
BigInteger.prototype.squareTo = function (r) {
var x = this.abs();
var i = r.t = 2 * x.t;
while (--i >= 0) {
r[i] = 0;
}
for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1);
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) {
r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
}
r.s = 0;
r.clamp();
};
// BigInteger.prototype.divRemTo = bnpDivRemTo;
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
BigInteger.prototype.divRemTo = function (m, q, r) {
var pm = m.abs();
if (pm.t <= 0) {
return;
}
var pt = this.abs();
if (pt.t < pm.t) {
if (q != null) {
q.fromInt(0);
}
if (r != null) {
this.copyTo(r);
}
return;
}
if (r == null) {
r = nbi();
}
var y = nbi();
var ts = this.s;
var ms = m.s;
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
}
else {
pm.copyTo(y);
pt.copyTo(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) {
return;
}
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
var d1 = this.FV / yt;
var d2 = (1 << this.F1) / yt;
var e = 1 << this.F2;
var i = r.t;
var j = i - ys;
var t = (q == null) ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) {
y[y.t++] = 0;
}
while (--j >= 0) {
// Estimate quotient digit
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) {
r.subTo(t, r);
}
}
}
if (q != null) {
r.drShiftTo(ys, q);
if (ts != ms) {
BigInteger.ZERO.subTo(q, q);
}
}
r.t = ys;
r.clamp();
if (nsh > 0) {
r.rShiftTo(nsh, r);
} // Denormalize remainder
if (ts < 0) {
BigInteger.ZERO.subTo(r, r);
}
};
// BigInteger.prototype.invDigit = bnpInvDigit;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
BigInteger.prototype.invDigit = function () {
if (this.t < 1) {
return 0;
}
var x = this[0];
if ((x & 1) == 0) {
return 0;
}
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y;
};
// BigInteger.prototype.isEven = bnpIsEven;
// (protected) true iff this is even
BigInteger.prototype.isEven = function () {
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
};
// BigInteger.prototype.exp = bnpExp;
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
BigInteger.prototype.exp = function (e, z) {
if (e > 0xffffffff || e < 1) {
return BigInteger.ONE;
}
var r = nbi();
var r2 = nbi();
var g = z.convert(this);
var i = nbits(e) - 1;
g.copyTo(r);
while (--i >= 0) {
z.sqrTo(r, r2);
if ((e & (1 << i)) > 0) {
z.mulTo(r2, g, r);
}
else {
var t = r;
r = r2;
r2 = t;
}
}
return z.revert(r);
};
// BigInteger.prototype.chunkSize = bnpChunkSize;
// (protected) return x s.t. r^x < DV
BigInteger.prototype.chunkSize = function (r) {
return Math.floor(Math.LN2 * this.DB / Math.log(r));
};
// BigInteger.prototype.toRadix = bnpToRadix;
// (protected) convert to radix string
BigInteger.prototype.toRadix = function (b) {
if (b == null) {
b = 10;
}
if (this.signum() == 0 || b < 2 || b > 36) {
return "0";
}
var cs = this.chunkSize(b);
var a = Math.pow(b, cs);
var d = nbv(a);
var y = nbi();
var z = nbi();
var r = "";
this.divRemTo(d, y, z);
while (y.signum() > 0) {
r = (a + z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d, y, z);
}
return z.intValue().toString(b) + r;
};
// BigInteger.prototype.fromRadix = bnpFromRadix;
// (protected) convert from radix string
BigInteger.prototype.fromRadix = function (s, b) {
this.fromInt(0);
if (b == null) {
b = 10;
}
var cs = this.chunkSize(b);
var d = Math.pow(b, cs);
var mi = false;
var j = 0;
var w = 0;
for (var i = 0; i < s.length; ++i) {
var x = intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-" && this.signum() == 0) {
mi = true;
}
continue;
}
w = b * w + x;
if (++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w, 0);
j = 0;
w = 0;
}
}
if (j > 0) {
this.dMultiply(Math.pow(b, j));
this.dAddOffset(w, 0);
}
if (mi) {
BigInteger.ZERO.subTo(this, this);
}
};
// BigInteger.prototype.fromNumber = bnpFromNumber;
// (protected) alternate constructor
BigInteger.prototype.fromNumber = function (a, b, c) {
if ("number" == typeof b) {
// new BigInteger(int,int,RNG)
if (a < 2) {
this.fromInt(1);
}
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1)) {
// force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
}
if (this.isEven()) {
this.dAddOffset(1, 0);
} // force odd
while (!this.isProbablePrime(b)) {
this.dAddOffset(2, 0);
if (this.bitLength() > a) {
this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
}
}
}
}
else {
// new BigInteger(int,RNG)
var x = [];
var t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) {
x[0] &= ((1 << t) - 1);
}
else {
x[0] = 0;
}
this.fromString(x, 256);
}
};
// BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
// (protected) r = this op a (bitwise)
BigInteger.prototype.bitwiseTo = function (a, op, r) {
var i;
var f;
var m = Math.min(a.t, this.t);
for (i = 0; i < m; ++i) {
r[i] = op(this[i], a[i]);
}
if (a.t < this.t) {
f = a.s & this.DM;
for (i = m; i < this.t; ++i) {
r[i] = op(this[i], f);
}
r.t = this.t;
}
else {
f = this.s & this.DM;
for (i = m; i < a.t; ++i) {
r[i] = op(f, a[i]);
}
r.t = a.t;
}
r.s = op(this.s, a.s);
r.clamp();
};
// BigInteger.prototype.changeBit = bnpChangeBit;
// (protected) this op (1<<n)
BigInteger.prototype.changeBit = function (n, op) {
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r, op, r);
return r;
};
// BigInteger.prototype.addTo = bnpAddTo;
// (protected) r = this + a
BigInteger.prototype.addTo = function (a, r) {
var i = 0;
var c = 0;
var m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c += a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while (i < a.t) {
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c > 0) {
r[i++] = c;
}
else if (c < -1) {
r[i++] = this.DV + c;
}
r.t = i;
r.clamp();
};
// BigInteger.prototype.dMultiply = bnpDMultiply;
// (protected) this *= n, this >= 0, 1 < n < DV
BigInteger.prototype.dMultiply = function (n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
++this.t;
this.clamp();
};
// BigInteger.prototype.dAddOffset = bnpDAddOffset;
// (protected) this += n << w words, this >= 0
BigInteger.prototype.dAddOffset = function (n, w) {
if (n == 0) {
return;
}
while (this.t <= w) {
this[this.t++] = 0;
}
this[w] += n;
while (this[w] >= this.DV) {
this[w] -= this.DV;
if (++w >= this.t) {
this[this.t++] = 0;
}
++this[w];
}
};
// BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyLowerTo = function (a, n, r) {
var i = Math.min(this.t + a.t, n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while (i > 0) {
r[--i] = 0;
}
for (var j = r.t - this.t; i < j; ++i) {
r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
}
for (var j = Math.min(a.t, n); i < j; ++i) {
this.am(0, a[i], r, i, 0, n - i);
}
r.clamp();
};
// BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
BigInteger.prototype.multiplyUpperTo = function (a, n, r) {
--n;
var i = r.t = this.t + a.t - n;
r.s = 0; // assumes a,this >= 0
while (--i >= 0) {
r[i] = 0;
}
for (i = Math.max(n - this.t, 0); i < a.t; ++i) {
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
}
r.clamp();
r.drShiftTo(1, r);
};
// BigInteger.prototype.modInt = bnpModInt;
// (protected) this % n, n < 2^26
BigInteger.prototype.modInt = function (n) {
if (n <= 0) {
return 0;
}
var d = this.DV % n;
var r = (this.s < 0) ? n - 1 : 0;
if (this.t > 0) {
if (d == 0) {
r = this[0] % n;
}
else {
for (var i = this.t - 1; i >= 0; --i) {
r = (d * r + this[i]) % n;
}
}
}
return r;
};
// BigInteger.prototype.millerRabin = bnpMillerRabin;
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
BigInteger.prototype.millerRabin = function (t) {
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if (k <= 0) {
return false;
}
var r = n1.shiftRight(k);
t = (t + 1) >> 1;
if (t > lowprimes.length) {
t = lowprimes.length;
}
var a = nbi();
for (var i = 0; i < t; ++i) {
// Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
var y = a.modPow(r, this);
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this);
if (y.compareTo(BigInteger.ONE) == 0) {
return false;
}
}
if (y.compareTo(n1) != 0) {
return false;
}
}
}
return true;
};
// BigInteger.prototype.square = bnSquare;
// (public) this^2
BigInteger.prototype.square = function () {
var r = nbi();
this.squareTo(r);
return r;
};
//#region ASYNC
// Public API method
BigInteger.prototype.gcda = function (a, callback) {
var x = (this.s < 0) ? this.negate() : this.clone();
var y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
var t = x;
x = y;
y = t;
}
var i = x.getLowestSetBit();
var g = y.getLowestSetBit();
if (g < 0) {
callback(x);
return;
}
if (i < g) {
g = i;
}
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
// Workhorse of the algorithm, gets called 200 - 800 times per 512 bit keygen.
var gcda1 = function () {
if ((i = x.getLowestSetBit()) > 0) {
x.rShiftTo(i, x);
}
if ((i = y.getLowestSetBit()) > 0) {
y.rShiftTo(i, y);
}
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
}
else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
if (!(x.signum() > 0)) {
if (g > 0) {
y.lShiftTo(g, y);
}
setTimeout(function () { callback(y); }, 0); // escape
}
else {
setTimeout(gcda1, 0);
}
};
setTimeout(gcda1, 10);
};
// (protected) alternate constructor
BigInteger.prototype.fromNumberAsync = function (a, b, c, callback) {
if ("number" == typeof b) {
if (a < 2) {
this.fromInt(1);
}
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1)) {
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
}
if (this.isEven()) {
this.dAddOffset(1, 0);
}
var bnp_1 = this;
var bnpfn1_1 = function () {
bnp_1.dAddOffset(2, 0);
if (bnp_1.bitLength() > a) {
bnp_1.subTo(BigInteger.ONE.shiftLeft(a - 1), bnp_1);
}
if (bnp_1.isProbablePrime(b)) {
setTimeout(function () { callback(); }, 0); // escape
}
else {
setTimeout(bnpfn1_1, 0);
}
};
setTimeout(bnpfn1_1, 0);
}
}
else {
var x = [];
var t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) {
x[0] &= ((1 << t) - 1);
}
else {
x[0] = 0;
}
this.fromString(x, 256);
}
};
return BigInteger;
}());
//#region REDUCERS
//#region NullExp
var NullExp = /** @class */ (function () {
function NullExp() {
}
// NullExp.prototype.convert = nNop;
NullExp.prototype.convert = function (x) {
return x;
};
// NullExp.prototype.revert = nNop;
NullExp.prototype.revert = function (x) {
return x;
};
// NullExp.prototype.mulTo = nMulTo;
NullExp.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
};
// NullExp.prototype.sqrTo = nSqrTo;
NullExp.prototype.sqrTo = function (x, r) {
x.squareTo(r);
};
return NullExp;
}());
// Modular reduction using "classic" algorithm
var Classic = /** @class */ (function () {
function Classic(m) {
this.m = m;
}
// Classic.prototype.convert = cConvert;
Classic.prototype.convert = function (x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) {
return x.mod(this.m);
}
else {
return x;
}
};
// Classic.prototype.revert = cRevert;
Classic.prototype.revert = function (x) {
return x;
};
// Classic.prototype.reduce = cReduce;
Classic.prototype.reduce = function (x) {
x.divRemTo(this.m, null, x);
};
// Classic.prototype.mulTo = cMulTo;
Classic.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// Classic.prototype.sqrTo = cSqrTo;
Classic.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
return Classic;
}());
//#endregion
//#region Montgomery
// Montgomery reduction
var Montgomery = /** @class */ (function () {
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.DB - 15)) - 1;
this.mt2 = 2 * m.t;
}
// Montgomery.prototype.convert = montConvert;
// xR mod m
Montgomery.prototype.convert = function (x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) {
this.m.subTo(r, r);
}
return r;
};
// Montgomery.prototype.revert = montRevert;
// x/R mod m
Montgomery.prototype.revert = function (x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
};
// Montgomery.prototype.reduce = montReduce;
// x = x/R mod m (HAC 14.32)
Montgomery.prototype.reduce = function (x) {
while (x.t <= this.mt2) {
// pad x so am has enough room later
x[x.t++] = 0;
}
for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff;
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) {
x.subTo(this.m, x);
}
};
// Montgomery.prototype.mulTo = montMulTo;
// r = "xy/R mod m"; x,y != r
Montgomery.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// Montgomery.prototype.sqrTo = montSqrTo;
// r = "x^2/R mod m"; x != r
Montgomery.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
return Montgomery;
}());
//#endregion Montgomery
//#region Barrett
// Barrett modular reduction
var Barrett = /** @class */ (function () {
function Barrett(m) {
this.m = m;
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
this.mu = this.r2.divide(m);
}
// Barrett.prototype.convert = barrettConvert;
Barrett.prototype.convert = function (x) {
if (x.s < 0 || x.t > 2 * this.m.t) {
return x.mod(this.m);
}
else if (x.compareTo(this.m) < 0) {
return x;
}
else {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
};
// Barrett.prototype.revert = barrettRevert;
Barrett.prototype.revert = function (x) {
return x;
};
// Barrett.prototype.reduce = barrettReduce;
// x = x mod m (HAC 14.42)
Barrett.prototype.reduce = function (x) {
x.drShiftTo(this.m.t - 1, this.r2);
if (x.t > this.m.t + 1) {
x.t = this.m.t + 1;
x.clamp();
}
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
while (x.compareTo(this.r2) < 0) {
x.dAddOffset(1, this.m.t + 1);
}
x.subTo(this.r2, x);
while (x.compareTo(this.m) >= 0) {
x.subTo(this.m, x);
}
};
// Barrett.prototype.mulTo = barrettMulTo;
// r = x*y mod m; x,y != r
Barrett.prototype.mulTo = function (x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
};
// Barrett.prototype.sqrTo = barrettSqrTo;
// r = x^2 mod m; x != r
Barrett.prototype.sqrTo = function (x, r) {
x.squareTo(r);
this.reduce(r);
};
return Barrett;
}());
//#endregion
//#endregion REDUCERS
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
function parseBigInt(str, r) {
return new BigInteger(str, r);
}
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff;
var xh = x >> 15;
while (--n >= 0) {
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff;
var xh = x >> 14;
while (--n >= 0) {
var l = this[i] & 0x3fff;
var h = this[i++] >> 14;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
}
if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if (j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1 << dbits) - 1);
BigInteger.prototype.DV = (1 << dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RC = [];
var rr;
var vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) {
BI_RC[rr++] = vv;
}
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) {
BI_RC[rr++] = vv;
}
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) {
BI_RC[rr++] = vv;
}
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)];
return (c == null) ? -1 : c;
}
// return bigint initialized to value
function nbv(i) {
var r = nbi();
r.fromInt(i);
return r;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1;
var t;
if ((t = x >>> 16) != 0) {
x = t;
r += 16;
}
if ((t = x >> 8) != 0) {
x = t;
r += 8;
}
if ((t = x >> 4) != 0) {
x = t;
r += 4;
}
if ((t = x >> 2) != 0) {
x = t;
r += 2;
}
if ((t = x >> 1) != 0) {
x = t;
r += 1;
}
return r;
}
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1); // prng4.js - uses Arcfour as a PRNG
var Arcfour = /** @class */ (function () {
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = [];
}
// Arcfour.prototype.init = ARC4init;
// Initialize arcfour context from key, an array of ints, each from [0..255]
Arcfour.prototype.init = function (key) {
var i;
var j;
var t;
for (i = 0; i < 256; ++i) {
this.S[i] = i;
}
j = 0;
for (i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
};
// Arcfour.prototype.next = ARC4next;
Arcfour.prototype.next = function () {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
};
return Arcfour;
}());
// Plug in your RNG constructor here
function prng_newstate() {
return new Arcfour();
}
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256; // Random number generator - requires a PRNG backend, e.g. prng4.js
var rng_state;
var rng_pool = null;
var rng_pptr;
// Initialize the pool with junk if needed.
if (rng_pool == null) {
rng_pool = [];
rng_pptr = 0;
var t = void 0;
if (window.crypto && window.crypto.getRandomValues) {
// Extract entropy (2048 bits) from RNG if available
var z = new Uint32Array(256);
window.crypto.getRandomValues(z);
for (t = 0; t < z.length; ++t) {
rng_pool[rng_pptr++] = z[t] & 255;
}
}
// Use mouse events for entropy, if we do not have enough entropy by the time
// we need it, entropy will be generated by Math.random.
var onMouseMoveListener_1 = function (ev) {
this.count = this.count || 0;
if (this.count >= 256 || rng_pptr >= rng_psize) {
if (window.removeEventListener) {
window.removeEventListener("mousemove", onMouseMoveListener_1, false);
}
else if (window.detachEvent) {
window.detachEvent("onmousemove", onMouseMoveListener_1);
}
return;
}
try {
var mouseCoordinates = ev.x + ev.y;
rng_pool[rng_pptr++] = mouseCoordinates & 255;
this.count += 1;
}
catch (e) {
// Sometimes Firefox will deny permission to access event properties for some reason. Ignore.
}
};
if (window.addEventListener) {
window.addEventListener("mousemove", onMouseMoveListener_1, false);
}
else if (window.attachEvent) {
window.attachEvent("onmousemove", onMouseMoveListener_1);
}
}
function rng_get_byte() {
if (rng_state == null) {
rng_state = prng_newstate();
// At this point, we may not have collected enough entropy. If not, fall back to Math.random
while (rng_pptr < rng_psize) {
var random = Math.floor(65536 * Math.random());
rng_pool[rng_pptr++] = random & 255;
}
rng_state.init(rng_pool);
for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) {
rng_pool[rng_pptr] = 0;
}
rng_pptr = 0;
}
// TODO: allow reseeding after first request
return rng_state.next();
}
var SecureRandom = /** @class */ (function () {
function SecureRandom() {
}
SecureRandom.prototype.nextBytes = function (ba) {
for (var i = 0; i < ba.length; ++i) {
ba[i] = rng_get_byte();
}
};
return SecureRandom;
}()); // Depends on jsbn.js and rng.js
// function linebrk(s,n) {
// var ret = "";
// var i = 0;
// while(i + n < s.length) {
// ret += s.substring(i,i+n) + "\n";
// i += n;
// }
// return ret + s.substring(i,s.length);
// }
// function byte2Hex(b) {
// if(b < 0x10)
// return "0" + b.toString(16);
// else
// return b.toString(16);
// }
function pkcs1pad1(s, n) {
if (n < s.length + 22) {
console.error("Message too long for RSA");
return null;
}
var len = n - s.length - 6;
var filler = "";
for (var f = 0; f < len; f += 2) {
filler += "ff";
}
var m = "0001" + filler + "00" + s;
return parseBigInt(m, 16);
}
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s, n) {
if (n < s.length + 11) { // TODO: fix for utf-8
console.error("Message too long for RSA");
return null;
}
var ba = [];
var i = s.length - 1;
while (i >= 0 && n > 0) {
var c = s.charCodeAt(i--);
if (c < 128) { // encode using utf-8
ba[--n] = c;
}
else if ((c > 127) && (c < 2048)) {
ba[--n] = (c & 63) | 128;
ba[--n] = (c >> 6) | 192;
}
else {
ba[--n] = (c & 63) | 128;
ba[--n] = ((c >> 6) & 63) | 128;
ba[--n] = (c >> 12) | 224;
}
}
ba[--n] = 0;
var rng = new SecureRandom();
var x = [];
while (n > 2) { // random non-zero pad
x[0] = 0;
while (x[0] == 0) {
rng.nextBytes(x);
}
ba[--n] = x[0];
}
ba[--n] = 2;
ba[--n] = 0;
return new BigInteger(ba);
}
// "empty" RSA key constructor
var RSAKey = /** @class */ (function () {
function RSAKey() {
this.n = null;
this.e = 0;
this.d = null;
this.p = null;
this.q = null;
this.dmp1 = null;
this.dmq1 = null;
this.coeff = null;
}
//#region PROTECTED
// protected
// RSAKey.prototype.doPublic = RSADoPublic;
// Perform raw public operation on "x": return x^e (mod n)
RSAKey.prototype.doPublic = function (x) {
return x.modPowInt(this.e, this.n);
};
// RSAKey.prototype.doPrivate = RSADoPrivate;
// Perform raw private operation on "x": return x^d (mod n)
RSAKey.prototype.doPrivate = function (x) {
if (this.p == null || this.q == null) {
return x.modPow(this.d, this.n);
}
// TODO: re-calculate any missing CRT params
var xp = x.mod(this.p).modPow(this.dmp1, this.p);
var xq = x.mod(this.q).modPow(this.dmq1, this.q);
while (xp.compareTo(xq) < 0) {
xp = xp.add(this.p);
}
return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
};
//#endregion PROTECTED
//#region PUBLIC
// RSAKey.prototype.setPublic = RSASetPublic;
// Set the public key fields N and e from hex strings
RSAKey.prototype.setPublic = function (N, E) {
if (N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N, 16);
this.e = parseInt(E, 16);
}
else {
console.error("Invalid RSA public key");
}
};
// RSAKey.prototype.encrypt = RSAEncrypt;
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
RSAKey.prototype.encrypt = function (text) {
var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3);
if (m == null) {
return null;
}
var c = this.doPublic(m);
if (c == null) {
return null;
}
var h = c.toString(16);
if ((h.length & 1) == 0) {
return h;
}
else {
return "0" + h;
}
};
// RSAKey.prototype.setPrivate = RSASetPrivate;
// Set the private key fields N, e, and d from hex strings
RSAKey.prototype.setPrivate = function (N, E, D) {
if (N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N, 16);
this.e = parseInt(E, 16);
this.d = parseBigInt(D, 16);
}
else {
console.error("Invalid RSA private key");
}
};
// RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
// Set the private key fields N, e, d and CRT params from hex strings
RSAKey.prototype.setPrivateEx = function (N, E, D, P, Q, DP, DQ, C) {
if (N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N, 16);
this.e = parseInt(E, 16);
this.d = parseBigInt(D, 16);
this.p = parseBigInt(P, 16);
this.q = parseBigInt(Q, 16);
this.dmp1 = parseBigInt(DP, 16);
this.dmq1 = parseBigInt(DQ, 16);
this.coeff = parseBigInt(C, 16);
}
else {
console.error("Invalid RSA private key");
}
};
// RSAKey.prototype.generate = RSAGenerate;
// Generate a new random private key B bits long, using public expt E
RSAKey.prototype.generate = function (B, E) {
var rng = new SecureRandom();
var qs = B >> 1;
this.e = parseInt(E, 16);
var ee = new BigInteger(E, 16);
for (;;) {
for (;;) {
this.p = new BigInteger(B - qs, 1, rng);
if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) {
break;
}
}
for (;;) {
this.q = new BigInteger(qs, 1, rng);
if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) {
break;
}
}
if (this.p.compareTo(this.q) <= 0) {
var t = this.p;
this.p = this.q;
this.q = t;
}
var p1 = this.p.subtract(BigInteger.ONE);
var q1 = this.q.subtract(BigInteger.ONE);
var phi = p1.multiply(q1);
if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
this.n = this.p.multiply(this.q);
this.d = ee.modInverse(phi);
this.dmp1 = this.d.mod(p1);
this.dmq1 = this.d.mod(q1);
this.coeff = this.q.modInverse(this.p);
break;
}
}
};
// RSAKey.prototype.decrypt = RSADecrypt;
// Return the PKCS#1 RSA decryption of "ctext".
// "ctext" is an even-length hex string and the output is a plain string.
RSAKey.prototype.decrypt = function (ctext) {
var c = parseBigInt(ctext, 16);
var m = this.doPrivate(c);
if (m == null) {
return null;
}
return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3);
};
// Generate a new random private key B bits long, using public expt E
RSAKey.prototype.generateAsync = function (B, E, callback) {
var rng = new SecureRandom();
var qs = B >> 1;
this.e = parseInt(E, 16);
var ee = new BigInteger(E, 16);
var rsa = this;
// These functions have non-descript names because they were originally for(;;) loops.
// I don't know about cryptography to give them better names than loop1-4.
var loop1 = function () {
var loop4 = function () {
if (rsa.p.compareTo(rsa.q) <= 0) {
var t = rsa.p;
rsa.p = rsa.q;
rsa.q = t;
}
var p1 = rsa.p.subtract(BigInteger.ONE);
var q1 = rsa.q.subtract(BigInteger.ONE);
var phi = p1.multiply(q1);
if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
rsa.n = rsa.p.multiply(rsa.q);
rsa.d = ee.modInverse(phi);
rsa.dmp1 = rsa.d.mod(p1);
rsa.dmq1 = rsa.d.mod(q1);
rsa.coeff = rsa.q.modInverse(rsa.p);
setTimeout(function () { callback(); }, 0); // escape
}
else {
setTimeout(loop1, 0);
}
};
var loop3 = function () {
rsa.q = nbi();
rsa.q.fromNumberAsync(qs, 1, rng, function () {
rsa.q.subtract(BigInteger.ONE).gcda(ee, function (r) {
if (r.compareTo(BigInteger.ONE) == 0 && rsa.q.isProbablePrime(10)) {
setTimeout(loop4, 0);
}
else {
setTimeout(loop3, 0);
}
});
});
};
var loop2 = function () {
rsa.p = nbi();
rsa.p.fromNumberAsync(B - qs, 1, rng, function () {
rsa.p.subtract(BigInteger.ONE).gcda(ee, function (r) {
if (r.compareTo(BigInteger.ONE) == 0 && rsa.p.isProbablePrime(10)) {
setTimeout(loop3, 0);
}
else {
setTimeout(loop2, 0);
}
});
});
};
setTimeout(loop2, 0);
};
setTimeout(loop1, 0);
};
RSAKey.prototype.sign = function (text, digestMethod, digestName) {
var header = getDigestHeader(digestName);
var digest = header + digestMethod(text).toString();
var m = pkcs1pad1(digest, this.n.bitLength() / 4);
if (m == null) {
return null;
}
var c = this.doPrivate(m);
if (c == null) {
return null;
}
var h = c.toString(16);
if ((h.length & 1) == 0) {
return h;
}
else {
return "0" + h;
}
};
RSAKey.prototype.verify = function (text, signature, digestMethod) {
var c = parseBigInt(signature, 16);
var m = this.doPublic(c);
if (m == null) {
return null;
}
var unpadded = m.toString(16).replace(/^1f+00/, "");
var digest = removeDigestHeader(unpadded);
return digest == digestMethod(text).toString();
};
return RSAKey;
}());
// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
function pkcs1unpad2(d, n) {
var b = d.toByteArray();
var i = 0;
while (i < b.length && b[i] == 0) {
++i;
}
if (b.length - i != n - 1 || b[i] != 2) {
return null;
}
++i;
while (b[i] != 0) {
if (++i >= b.length) {
return null;
}
}
var ret = "";
while (++i < b.length) {
var c = b[i] & 255;
if (c < 128) { // utf-8 decode
ret += String.fromCharCode(c);
}
else if ((c > 191) && (c < 224)) {
ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63));
++i;
}
else {
ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63));
i += 2;
}
}
return ret;
}
// https://tools.ietf.org/html/rfc3447#page-43
var DIGEST_HEADERS = {
md2: "3020300c06082a864886f70d020205000410",
md5: "3020300c06082a864886f70d020505000410",
sha1: "3021300906052b0e03021a05000414",
sha224: "302d300d06096086480165030402040500041c",
sha256: "3031300d060960864801650304020105000420",
sha384: "3041300d060960864801650304020205000430",
sha512: "3051300d060960864801650304020305000440",
ripemd160: "3021300906052b2403020105000414",
};
function getDigestHeader(name) {
return DIGEST_HEADERS[name] || "";
}
function removeDigestHeader(str) {
for (var name_1 in DIGEST_HEADERS) {
if (DIGEST_HEADERS.hasOwnProperty(name_1)) {
var header = DIGEST_HEADERS[name_1];
var len = header.length;
if (str.substr(0, len) == header) {
return str.substr(len);
}
}
}
return str;
}
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
// function RSAEncryptB64(text) {
// var h = this.encrypt(text);
// if(h) return hex2b64(h); else return null;
// }
// public
// RSAKey.prototype.encrypt_b64 = RSAEncryptB64; /*!
Copyright (c) 2011, Yahoo! Inc. All rights reserved.
Code licensed under the BSD License:
http://developer.yahoo.com/yui/license.html
version: 2.9.0
*/
var YAHOO = {};
YAHOO.lang = {
/**
* Utility to set up the prototype, constructor and superclass properties to
* support an inheritance strategy that can chain constructors and methods.
* Static members will not be inherited.
*
* @method extend
* @static
* @param {Function} subc the object to modify
* @param {Function} superc the object to inherit
* @param {Object} overrides additional properties/methods to add to the
* subclass prototype. These will override the
* matching items obtained from the superclass
* if present.
*/
extend: function(subc, superc, overrides) {
if (! superc || ! subc) {
throw new Error("YAHOO.lang.extend failed, please check that " +
"all dependencies are included.");
} var F = function() {};
F.prototype = superc.prototype;
subc.prototype = new F();
subc.prototype.constructor = subc;
subc.superclass = superc.prototype; if (superc.prototype.constructor == Object.prototype.constructor) {
superc.prototype.constructor = superc;
} if (overrides) {
var i;
for (i in overrides) {
subc.prototype[i] = overrides[i];
} /*
* IE will not enumerate native functions in a derived object even if the
* function was overridden. This is a workaround for specific functions
* we care about on the Object prototype.
* @property _IEEnumFix
* @param {Function} r the object to receive the augmentation
* @param {Function} s the object that supplies the properties to augment
* @static
* @private
*/
var _IEEnumFix = function() {},
ADD = ["toString", "valueOf"];
try {
if (/MSIE/.test(navigator.userAgent)) {
_IEEnumFix = function(r, s) {
for (i = 0; i < ADD.length; i = i + 1) {
var fname = ADD[i], f = s[fname];
if (typeof f === 'function' && f != Object.prototype[fname]) {
r[fname] = f;
}
}
};
}
} catch (ex) {} _IEEnumFix(subc.prototype, overrides);
}
}
}; /* asn1-1.0.13.js (c) 2013-2017 Kenji Urushima | kjur.github.com/jsrsasign/license
*/ /**
* @fileOverview
* @name asn1-1.0.js
* @author Kenji Urushima kenji.urushima@gmail.com
* @version asn1 1.0.13 (2017-Jun-02)
* @since jsrsasign 2.1
* @license <a href="https://kjur.github.io/jsrsasign/license/">MIT License</a>
*/ /**
* kjur's class library name space
* <p>
* This name space provides following name spaces:
* <ul>
* <li>{@link KJUR.asn1} - ASN.1 primitive hexadecimal encoder</li>
* <li>{@link KJUR.asn1.x509} - ASN.1 structure for X.509 certificate and CRL</li>
* <li>{@link KJUR.crypto} - Java Cryptographic Extension(JCE) style MessageDigest/Signature
* class and utilities</li>
* </ul>
* </p>
* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2.
* @name KJUR
* @namespace kjur's class library name space
*/
var KJUR = {}; /**
* kjur's ASN.1 class library name space
* <p>
* This is ITU-T X.690 ASN.1 DER encoder class library and
* class structure and methods is very similar to
* org.bouncycastle.asn1 package of
* well known BouncyCaslte Cryptography Library.
* <h4>PROVIDING ASN.1 PRIMITIVES</h4>
* Here are ASN.1 DER primitive classes.
* <ul>
* <li>0x01 {@link KJUR.asn1.DERBoolean}</li>
* <li>0x02 {@link KJUR.asn1.DERInteger}</li>
* <li>0x03 {@link KJUR.asn1.DERBitString}</li>
* <li>0x04 {@link KJUR.asn1.DEROctetString}</li>
* <li>0x05 {@link KJUR.asn1.DERNull}</li>
* <li>0x06 {@link KJUR.asn1.DERObjectIdentifier}</li>
* <li>0x0a {@link KJUR.asn1.DEREnumerated}</li>
* <li>0x0c {@link KJUR.asn1.DERUTF8String}</li>
* <li>0x12 {@link KJUR.asn1.DERNumericString}</li>
* <li>0x13 {@link KJUR.asn1.DERPrintableString}</li>
* <li>0x14 {@link KJUR.asn1.DERTeletexString}</li>
* <li>0x16 {@link KJUR.asn1.DERIA5String}</li>
* <li>0x17 {@link KJUR.asn1.DERUTCTime}</li>
* <li>0x18 {@link KJUR.asn1.DERGeneralizedTime}</li>
* <li>0x30 {@link KJUR.asn1.DERSequence}</li>
* <li>0x31 {@link KJUR.asn1.DERSet}</li>
* </ul>
* <h4>OTHER ASN.1 CLASSES</h4>
* <ul>
* <li>{@link KJUR.asn1.ASN1Object}</li>
* <li>{@link KJUR.asn1.DERAbstractString}</li>
* <li>{@link KJUR.asn1.DERAbstractTime}</li>
* <li>{@link KJUR.asn1.DERAbstractStructured}</li>
* <li>{@link KJUR.asn1.DERTaggedObject}</li>
* </ul>
* <h4>SUB NAME SPACES</h4>
* <ul>
* <li>{@link KJUR.asn1.cades} - CAdES long term signature format</li>
* <li>{@link KJUR.asn1.cms} - Cryptographic Message Syntax</li>
* <li>{@link KJUR.asn1.csr} - Certificate Signing Request (CSR/PKCS#10)</li>
* <li>{@link KJUR.asn1.tsp} - RFC 3161 Timestamping Protocol Format</li>
* <li>{@link KJUR.asn1.x509} - RFC 5280 X.509 certificate and CRL</li>
* </ul>
* </p>
* NOTE: Please ignore method summary and document of this namespace.
* This caused by a bug of jsdoc2.
* @name KJUR.asn1
* @namespace
*/
if (typeof KJUR.asn1 == "undefined" || !KJUR.asn1) KJUR.asn1 = {}; /**
* ASN1 utilities class
* @name KJUR.asn1.ASN1Util
* @class ASN1 utilities class
* @since asn1 1.0.2
*/
KJUR.asn1.ASN1Util = new function() {
this.integerToByteHex = function(i) {
var h = i.toString(16);
if ((h.length % 2) == 1) h = '0' + h;
return h;
};
this.bigIntToMinTwosComplementsHex = function(bigIntegerValue) {
var h = bigIntegerValue.toString(16);
if (h.substr(0, 1) != '-') {
if (h.length % 2 == 1) {
h = '0' + h;
} else {
if (! h.match(/^[0-7]/)) {
h = '00' + h;
}
}
} else {
var hPos = h.substr(1);
var xorLen = hPos.length;
if (xorLen % 2 == 1) {
xorLen += 1;
} else {
if (! h.match(/^[0-7]/)) {
xorLen += 2;
}
}
var hMask = '';
for (var i = 0; i < xorLen; i++) {
hMask += 'f';
}
var biMask = new BigInteger(hMask, 16);
var biNeg = biMask.xor(bigIntegerValue).add(BigInteger.ONE);
h = biNeg.toString(16).replace(/^-/, '');
}
return h;
};
/**
* get PEM string from hexadecimal data and header string
* @name getPEMStringFromHex
* @memberOf KJUR.asn1.ASN1Util
* @function
* @param {String} dataHex hexadecimal string of PEM body
* @param {String} pemHeader PEM header string (ex. 'RSA PRIVATE KEY')
* @return {String} PEM formatted string of input data
* @description
* This method converts a hexadecimal string to a PEM string with
* a specified header. Its line break will be CRLF("\r\n").
* @example
* var pem = KJUR.asn1.ASN1Util.getPEMStringFromHex('616161', 'RSA PRIVATE KEY');
* // value of pem will be:
* -----BEGIN PRIVATE KEY-----
* YWFh
* -----END PRIVATE KEY-----
*/
this.getPEMStringFromHex = function(dataHex, pemHeader) {
return hextopem(dataHex, pemHeader);
}; /**
* generate ASN1Object specifed by JSON parameters
* @name newObject
* @memberOf KJUR.asn1.ASN1Util
* @function
* @param {Array} param JSON parameter to generate ASN1Object
* @return {KJUR.asn1.ASN1Object} generated object
* @since asn1 1.0.3
* @description
* generate any ASN1Object specified by JSON param
* including ASN.1 primitive or structured.
* Generally 'param' can be described as follows:
* <blockquote>
* {TYPE-OF-ASNOBJ: ASN1OBJ-PARAMETER}
* </blockquote>
* 'TYPE-OF-ASN1OBJ' can be one of following symbols:
* <ul>
* <li>'bool' - DERBoolean</li>
* <li>'int' - DERInteger</li>
* <li>'bitstr' - DERBitString</li>
* <li>'octstr' - DEROctetString</li>
* <li>'null' - DERNull</li>
* <li>'oid' - DERObjectIdentifier</li>
* <li>'enum' - DEREnumerated</li>
* <li>'utf8str' - DERUTF8String</li>
* <li>'numstr' - DERNumericString</li>
* <li>'prnstr' - DERPrintableString</li>
* <li>'telstr' - DERTeletexString</li>
* <li>'ia5str' - DERIA5String</li>
* <li>'utctime' - DERUTCTime</li>
* <li>'gentime' - DERGeneralizedTime</li>
* <li>'seq' - DERSequence</li>
* <li>'set' - DERSet</li>
* <li>'tag' - DERTaggedObject</li>
* </ul>
* @example
* newObject({'prnstr': 'aaa'});
* newObject({'seq': [{'int': 3}, {'prnstr': 'aaa'}]})
* // ASN.1 Tagged Object
* newObject({'tag': {'tag': 'a1',
* 'explicit': true,
* 'obj': {'seq': [{'int': 3}, {'prnstr': 'aaa'}]}}});
* // more simple representation of ASN.1 Tagged Object
* newObject({'tag': ['a1',
* true,
* {'seq': [
* {'int': 3},
* {'prnstr': 'aaa'}]}
* ]});
*/
this.newObject = function(param) {
var _KJUR = KJUR,
_KJUR_asn1 = _KJUR.asn1,
_DERBoolean = _KJUR_asn1.DERBoolean,
_DERInteger = _KJUR_asn1.DERInteger,
_DERBitString = _KJUR_asn1.DERBitString,
_DEROctetString = _KJUR_asn1.DEROctetString,
_DERNull = _KJUR_asn1.DERNull,
_DERObjectIdentifier = _KJUR_asn1.DERObjectIdentifier,
_DEREnumerated = _KJUR_asn1.DEREnumerated,
_DERUTF8String = _KJUR_asn1.DERUTF8String,
_DERNumericString = _KJUR_asn1.DERNumericString,
_DERPrintableString = _KJUR_asn1.DERPrintableString,
_DERTeletexString = _KJUR_asn1.DERTeletexString,
_DERIA5String = _KJUR_asn1.DERIA5String,
_DERUTCTime = _KJUR_asn1.DERUTCTime,
_DERGeneralizedTime = _KJUR_asn1.DERGeneralizedTime,
_DERSequence = _KJUR_asn1.DERSequence,
_DERSet = _KJUR_asn1.DERSet,
_DERTaggedObject = _KJUR_asn1.DERTaggedObject,
_newObject = _KJUR_asn1.ASN1Util.newObject; var keys = Object.keys(param);
if (keys.length != 1)
throw "key of param shall be only one.";
var key = keys[0]; if (":bool:int:bitstr:octstr:null:oid:enum:utf8str:numstr:prnstr:telstr:ia5str:utctime:gentime:seq:set:tag:".indexOf(":" + key + ":") == -1)
throw "undefined key: " + key; if (key == "bool") return new _DERBoolean(param[key]);
if (key == "int") return new _DERInteger(param[key]);
if (key == "bitstr") return new _DERBitString(param[key]);
if (key == "octstr") return new _DEROctetString(param[key]);
if (key == "null") return new _DERNull(param[key]);
if (key == "oid") return new _DERObjectIdentifier(param[key]);
if (key == "enum") return new _DEREnumerated(param[key]);
if (key == "utf8str") return new _DERUTF8String(param[key]);
if (key == "numstr") return new _DERNumericString(param[key]);
if (key == "prnstr") return new _DERPrintableString(param[key]);
if (key == "telstr") return new _DERTeletexString(param[key]);
if (key == "ia5str") return new _DERIA5String(param[key]);
if (key == "utctime") return new _DERUTCTime(param[key]);
if (key == "gentime") return new _DERGeneralizedTime(param[key]); if (key == "seq") {
var paramList = param[key];
var a = [];
for (var i = 0; i < paramList.length; i++) {
var asn1Obj = _newObject(paramList[i]);
a.push(asn1Obj);
}
return new _DERSequence({'array': a});
} if (key == "set") {
var paramList = param[key];
var a = [];
for (var i = 0; i < paramList.length; i++) {
var asn1Obj = _newObject(paramList[i]);
a.push(asn1Obj);
}
return new _DERSet({'array': a});
} if (key == "tag") {
var tagParam = param[key];
if (Object.prototype.toString.call(tagParam) === '[object Array]' &&
tagParam.length == 3) {
var obj = _newObject(tagParam[2]);
return new _DERTaggedObject({tag: tagParam[0],
explicit: tagParam[1],
obj: obj});
} else {
var newParam = {};
if (tagParam.explicit !== undefined)
newParam.explicit = tagParam.explicit;
if (tagParam.tag !== undefined)
newParam.tag = tagParam.tag;
if (tagParam.obj === undefined)
throw "obj shall be specified for 'tag'.";
newParam.obj = _newObject(tagParam.obj);
return new _DERTaggedObject(newParam);
}
}
}; /**
* get encoded hexadecimal string of ASN1Object specifed by JSON parameters
* @name jsonToASN1HEX
* @memberOf KJUR.asn1.ASN1Util
* @function
* @param {Array} param JSON parameter to generate ASN1Object
* @return hexadecimal string of ASN1Object
* @since asn1 1.0.4
* @description
* As for ASN.1 object representation of JSON object,
* please see {@link newObject}.
* @example
* jsonToASN1HEX({'prnstr': 'aaa'});
*/
this.jsonToASN1HEX = function(param) {
var asn1Obj = this.newObject(param);
return asn1Obj.getEncodedHex();
};
}; /**
* get dot noted oid number string from hexadecimal value of OID
* @name oidHexToInt
* @memberOf KJUR.asn1.ASN1Util
* @function
* @param {String} hex hexadecimal value of object identifier
* @return {String} dot noted string of object identifier
* @since jsrsasign 4.8.3 asn1 1.0.7
* @description
* This static method converts from hexadecimal string representation of
* ASN.1 value of object identifier to oid number string.
* @example
* KJUR.asn1.ASN1Util.oidHexToInt('550406') &rarr; "2.5.4.6"
*/
KJUR.asn1.ASN1Util.oidHexToInt = function(hex) {
var s = "";
var i01 = parseInt(hex.substr(0, 2), 16);
var i0 = Math.floor(i01 / 40);
var i1 = i01 % 40;
var s = i0 + "." + i1; var binbuf = "";
for (var i = 2; i < hex.length; i += 2) {
var value = parseInt(hex.substr(i, 2), 16);
var bin = ("00000000" + value.toString(2)).slice(- 8);
binbuf = binbuf + bin.substr(1, 7);
if (bin.substr(0, 1) == "0") {
var bi = new BigInteger(binbuf, 2);
s = s + "." + bi.toString(10);
binbuf = "";
}
}
return s;
}; /**
* get hexadecimal value of object identifier from dot noted oid value
* @name oidIntToHex
* @memberOf KJUR.asn1.ASN1Util
* @function
* @param {String} oidString dot noted string of object identifier
* @return {String} hexadecimal value of object identifier
* @since jsrsasign 4.8.3 asn1 1.0.7
* @description
* This static method converts from object identifier value string.
* to hexadecimal string representation of it.
* @example
* KJUR.asn1.ASN1Util.oidIntToHex("2.5.4.6") &rarr; "550406"
*/
KJUR.asn1.ASN1Util.oidIntToHex = function(oidString) {
var itox = function(i) {
var h = i.toString(16);
if (h.length == 1) h = '0' + h;
return h;
}; var roidtox = function(roid) {
var h = '';
var bi = new BigInteger(roid, 10);
var b = bi.toString(2);
var padLen = 7 - b.length % 7;
if (padLen == 7) padLen = 0;
var bPad = '';
for (var i = 0; i < padLen; i++) bPad += '0';
b = bPad + b;
for (var i = 0; i < b.length - 1; i += 7) {
var b8 = b.substr(i, 7);
if (i != b.length - 7) b8 = '1' + b8;
h += itox(parseInt(b8, 2));
}
return h;
}; if (! oidString.match(/^[0-9.]+$/)) {
throw "malformed oid string: " + oidString;
}
var h = '';
var a = oidString.split('.');
var i0 = parseInt(a[0]) * 40 + parseInt(a[1]);
h += itox(i0);
a.splice(0, 2);
for (var i = 0; i < a.length; i++) {
h += roidtox(a[i]);
}
return h;
}; // ********************************************************************
// Abstract ASN.1 Classes
// ******************************************************************** // ******************************************************************** /**
* base class for ASN.1 DER encoder object
* @name KJUR.asn1.ASN1Object
* @class base class for ASN.1 DER encoder object
* @property {Boolean} isModified flag whether internal data was changed
* @property {String} hTLV hexadecimal string of ASN.1 TLV
* @property {String} hT hexadecimal string of ASN.1 TLV tag(T)
* @property {String} hL hexadecimal string of ASN.1 TLV length(L)
* @property {String} hV hexadecimal string of ASN.1 TLV value(V)
* @description
*/
KJUR.asn1.ASN1Object = function() {
var hV = ''; /**
* get hexadecimal ASN.1 TLV length(L) bytes from TLV value(V)
* @name getLengthHexFromValue
* @memberOf KJUR.asn1.ASN1Object#
* @function
* @return {String} hexadecimal string of ASN.1 TLV length(L)
*/
this.getLengthHexFromValue = function() {
if (typeof this.hV == "undefined" || this.hV == null) {
throw "this.hV is null or undefined.";
}
if (this.hV.length % 2 == 1) {
throw "value hex must be even length: n=" + hV.length + ",v=" + this.hV;
}
var n = this.hV.length / 2;
var hN = n.toString(16);
if (hN.length % 2 == 1) {
hN = "0" + hN;
}
if (n < 128) {
return hN;
} else {
var hNlen = hN.length / 2;
if (hNlen > 15) {
throw "ASN.1 length too long to represent by 8x: n = " + n.toString(16);
}
var head = 128 + hNlen;
return head.toString(16) + hN;
}
}; /**
* get hexadecimal string of ASN.1 TLV bytes
* @name getEncodedHex
* @memberOf KJUR.asn1.ASN1Object#
* @function
* @return {String} hexadecimal string of ASN.1 TLV
*/
this.getEncodedHex = function() {
if (this.hTLV == null || this.isModified) {
this.hV = this.getFreshValueHex();
this.hL = this.getLengthHexFromValue();
this.hTLV = this.hT + this.hL + this.hV;
this.isModified = false;
//alert("first time: " + this.hTLV);
}
return this.hTLV;
}; /**
* get hexadecimal string of ASN.1 TLV value(V) bytes
* @name getValueHex
* @memberOf KJUR.asn1.ASN1Object#
* @function
* @return {String} hexadecimal string of ASN.1 TLV value(V) bytes
*/
this.getValueHex = function() {
this.getEncodedHex();
return this.hV;
}; this.getFreshValueHex = function() {
return '';
};
}; // == BEGIN DERAbstractString ================================================
/**
* base class for ASN.1 DER string classes
* @name KJUR.asn1.DERAbstractString
* @class base class for ASN.1 DER string classes
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @property {String} s internal string of value
* @extends KJUR.asn1.ASN1Object
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>str - specify initial ASN.1 value(V) by a string</li>
* <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li>
* </ul>
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERAbstractString = function(params) {
KJUR.asn1.DERAbstractString.superclass.constructor.call(this); /**
* get string value of this string object
* @name getString
* @memberOf KJUR.asn1.DERAbstractString#
* @function
* @return {String} string value of this string object
*/
this.getString = function() {
return this.s;
}; /**
* set value by a string
* @name setString
* @memberOf KJUR.asn1.DERAbstractString#
* @function
* @param {String} newS value by a string to set
*/
this.setString = function(newS) {
this.hTLV = null;
this.isModified = true;
this.s = newS;
this.hV = stohex(this.s);
}; /**
* set value by a hexadecimal string
* @name setStringHex
* @memberOf KJUR.asn1.DERAbstractString#
* @function
* @param {String} newHexString value by a hexadecimal string to set
*/
this.setStringHex = function(newHexString) {
this.hTLV = null;
this.isModified = true;
this.s = null;
this.hV = newHexString;
}; this.getFreshValueHex = function() {
return this.hV;
}; if (typeof params != "undefined") {
if (typeof params == "string") {
this.setString(params);
} else if (typeof params['str'] != "undefined") {
this.setString(params['str']);
} else if (typeof params['hex'] != "undefined") {
this.setStringHex(params['hex']);
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERAbstractString, KJUR.asn1.ASN1Object);
// == END DERAbstractString ================================================ // == BEGIN DERAbstractTime ==================================================
/**
* base class for ASN.1 DER Generalized/UTCTime class
* @name KJUR.asn1.DERAbstractTime
* @class base class for ASN.1 DER Generalized/UTCTime class
* @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'})
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERAbstractTime = function(params) {
KJUR.asn1.DERAbstractTime.superclass.constructor.call(this); // --- PRIVATE METHODS --------------------
this.localDateToUTC = function(d) {
utc = d.getTime() + (d.getTimezoneOffset() * 60000);
var utcDate = new Date(utc);
return utcDate;
}; /*
* format date string by Data object
* @name formatDate
* @memberOf KJUR.asn1.AbstractTime;
* @param {Date} dateObject
* @param {string} type 'utc' or 'gen'
* @param {boolean} withMillis flag for with millisections or not
* @description
* 'withMillis' flag is supported from asn1 1.0.6.
*/
this.formatDate = function(dateObject, type, withMillis) {
var pad = this.zeroPadding;
var d = this.localDateToUTC(dateObject);
var year = String(d.getFullYear());
if (type == 'utc') year = year.substr(2, 2);
var month = pad(String(d.getMonth() + 1), 2);
var day = pad(String(d.getDate()), 2);
var hour = pad(String(d.getHours()), 2);
var min = pad(String(d.getMinutes()), 2);
var sec = pad(String(d.getSeconds()), 2);
var s = year + month + day + hour + min + sec;
if (withMillis === true) {
var millis = d.getMilliseconds();
if (millis != 0) {
var sMillis = pad(String(millis), 3);
sMillis = sMillis.replace(/[0]+$/, "");
s = s + "." + sMillis;
}
}
return s + "Z";
}; this.zeroPadding = function(s, len) {
if (s.length >= len) return s;
return new Array(len - s.length + 1).join('0') + s;
}; // --- PUBLIC METHODS --------------------
/**
* get string value of this string object
* @name getString
* @memberOf KJUR.asn1.DERAbstractTime#
* @function
* @return {String} string value of this time object
*/
this.getString = function() {
return this.s;
}; /**
* set value by a string
* @name setString
* @memberOf KJUR.asn1.DERAbstractTime#
* @function
* @param {String} newS value by a string to set such like "130430235959Z"
*/
this.setString = function(newS) {
this.hTLV = null;
this.isModified = true;
this.s = newS;
this.hV = stohex(newS);
}; /**
* set value by a Date object
* @name setByDateValue
* @memberOf KJUR.asn1.DERAbstractTime#
* @function
* @param {Integer} year year of date (ex. 2013)
* @param {Integer} month month of date between 1 and 12 (ex. 12)
* @param {Integer} day day of month
* @param {Integer} hour hours of date
* @param {Integer} min minutes of date
* @param {Integer} sec seconds of date
*/
this.setByDateValue = function(year, month, day, hour, min, sec) {
var dateObject = new Date(Date.UTC(year, month - 1, day, hour, min, sec, 0));
this.setByDate(dateObject);
}; this.getFreshValueHex = function() {
return this.hV;
};
};
YAHOO.lang.extend(KJUR.asn1.DERAbstractTime, KJUR.asn1.ASN1Object);
// == END DERAbstractTime ================================================== // == BEGIN DERAbstractStructured ============================================
/**
* base class for ASN.1 DER structured class
* @name KJUR.asn1.DERAbstractStructured
* @class base class for ASN.1 DER structured class
* @property {Array} asn1Array internal array of ASN1Object
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERAbstractStructured = function(params) {
KJUR.asn1.DERAbstractString.superclass.constructor.call(this); /**
* set value by array of ASN1Object
* @name setByASN1ObjectArray
* @memberOf KJUR.asn1.DERAbstractStructured#
* @function
* @param {array} asn1ObjectArray array of ASN1Object to set
*/
this.setByASN1ObjectArray = function(asn1ObjectArray) {
this.hTLV = null;
this.isModified = true;
this.asn1Array = asn1ObjectArray;
}; /**
* append an ASN1Object to internal array
* @name appendASN1Object
* @memberOf KJUR.asn1.DERAbstractStructured#
* @function
* @param {ASN1Object} asn1Object to add
*/
this.appendASN1Object = function(asn1Object) {
this.hTLV = null;
this.isModified = true;
this.asn1Array.push(asn1Object);
}; this.asn1Array = new Array();
if (typeof params != "undefined") {
if (typeof params['array'] != "undefined") {
this.asn1Array = params['array'];
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERAbstractStructured, KJUR.asn1.ASN1Object); // ********************************************************************
// ASN.1 Object Classes
// ******************************************************************** // ********************************************************************
/**
* class for ASN.1 DER Boolean
* @name KJUR.asn1.DERBoolean
* @class class for ASN.1 DER Boolean
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERBoolean = function() {
KJUR.asn1.DERBoolean.superclass.constructor.call(this);
this.hT = "01";
this.hTLV = "0101ff";
};
YAHOO.lang.extend(KJUR.asn1.DERBoolean, KJUR.asn1.ASN1Object); // ********************************************************************
/**
* class for ASN.1 DER Integer
* @name KJUR.asn1.DERInteger
* @class class for ASN.1 DER Integer
* @extends KJUR.asn1.ASN1Object
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>int - specify initial ASN.1 value(V) by integer value</li>
* <li>bigint - specify initial ASN.1 value(V) by BigInteger object</li>
* <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li>
* </ul>
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERInteger = function(params) {
KJUR.asn1.DERInteger.superclass.constructor.call(this);
this.hT = "02"; /**
* set value by Tom Wu's BigInteger object
* @name setByBigInteger
* @memberOf KJUR.asn1.DERInteger#
* @function
* @param {BigInteger} bigIntegerValue to set
*/
this.setByBigInteger = function(bigIntegerValue) {
this.hTLV = null;
this.isModified = true;
this.hV = KJUR.asn1.ASN1Util.bigIntToMinTwosComplementsHex(bigIntegerValue);
}; /**
* set value by integer value
* @name setByInteger
* @memberOf KJUR.asn1.DERInteger
* @function
* @param {Integer} integer value to set
*/
this.setByInteger = function(intValue) {
var bi = new BigInteger(String(intValue), 10);
this.setByBigInteger(bi);
}; /**
* set value by integer value
* @name setValueHex
* @memberOf KJUR.asn1.DERInteger#
* @function
* @param {String} hexadecimal string of integer value
* @description
* <br/>
* NOTE: Value shall be represented by minimum octet length of
* two's complement representation.
* @example
* new KJUR.asn1.DERInteger(123);
* new KJUR.asn1.DERInteger({'int': 123});
* new KJUR.asn1.DERInteger({'hex': '1fad'});
*/
this.setValueHex = function(newHexString) {
this.hV = newHexString;
}; this.getFreshValueHex = function() {
return this.hV;
}; if (typeof params != "undefined") {
if (typeof params['bigint'] != "undefined") {
this.setByBigInteger(params['bigint']);
} else if (typeof params['int'] != "undefined") {
this.setByInteger(params['int']);
} else if (typeof params == "number") {
this.setByInteger(params);
} else if (typeof params['hex'] != "undefined") {
this.setValueHex(params['hex']);
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERInteger, KJUR.asn1.ASN1Object); // ********************************************************************
/**
* class for ASN.1 DER encoded BitString primitive
* @name KJUR.asn1.DERBitString
* @class class for ASN.1 DER encoded BitString primitive
* @extends KJUR.asn1.ASN1Object
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>bin - specify binary string (ex. '10111')</li>
* <li>array - specify array of boolean (ex. [true,false,true,true])</li>
* <li>hex - specify hexadecimal string of ASN.1 value(V) including unused bits</li>
* <li>obj - specify {@link KJUR.asn1.ASN1Util.newObject}
* argument for "BitString encapsulates" structure.</li>
* </ul>
* NOTE1: 'params' can be omitted.<br/>
* NOTE2: 'obj' parameter have been supported since
* asn1 1.0.11, jsrsasign 6.1.1 (2016-Sep-25).<br/>
* @example
* // default constructor
* o = new KJUR.asn1.DERBitString();
* // initialize with binary string
* o = new KJUR.asn1.DERBitString({bin: "1011"});
* // initialize with boolean array
* o = new KJUR.asn1.DERBitString({array: [true,false,true,true]});
* // initialize with hexadecimal string (04 is unused bits)
* o = new KJUR.asn1.DEROctetString({hex: "04bac0"});
* // initialize with ASN1Util.newObject argument for encapsulated
* o = new KJUR.asn1.DERBitString({obj: {seq: [{int: 3}, {prnstr: 'aaa'}]}});
* // above generates a ASN.1 data like this:
* // BIT STRING, encapsulates {
* // SEQUENCE {
* // INTEGER 3
* // PrintableString 'aaa'
* // }
* // }
*/
KJUR.asn1.DERBitString = function(params) {
if (params !== undefined && typeof params.obj !== "undefined") {
var o = KJUR.asn1.ASN1Util.newObject(params.obj);
params.hex = "00" + o.getEncodedHex();
}
KJUR.asn1.DERBitString.superclass.constructor.call(this);
this.hT = "03"; /**
* set ASN.1 value(V) by a hexadecimal string including unused bits
* @name setHexValueIncludingUnusedBits
* @memberOf KJUR.asn1.DERBitString#
* @function
* @param {String} newHexStringIncludingUnusedBits
*/
this.setHexValueIncludingUnusedBits = function(newHexStringIncludingUnusedBits) {
this.hTLV = null;
this.isModified = true;
this.hV = newHexStringIncludingUnusedBits;
}; /**
* set ASN.1 value(V) by unused bit and hexadecimal string of value
* @name setUnusedBitsAndHexValue
* @memberOf KJUR.asn1.DERBitString#
* @function
* @param {Integer} unusedBits
* @param {String} hValue
*/
this.setUnusedBitsAndHexValue = function(unusedBits, hValue) {
if (unusedBits < 0 || 7 < unusedBits) {
throw "unused bits shall be from 0 to 7: u = " + unusedBits;
}
var hUnusedBits = "0" + unusedBits;
this.hTLV = null;
this.isModified = true;
this.hV = hUnusedBits + hValue;
}; /**
* set ASN.1 DER BitString by binary string<br/>
* @name setByBinaryString
* @memberOf KJUR.asn1.DERBitString#
* @function
* @param {String} binaryString binary value string (i.e. '10111')
* @description
* Its unused bits will be calculated automatically by length of
* 'binaryValue'. <br/>
* NOTE: Trailing zeros '0' will be ignored.
* @example
* o = new KJUR.asn1.DERBitString();
* o.setByBooleanArray("01011");
*/
this.setByBinaryString = function(binaryString) {
binaryString = binaryString.replace(/0+$/, '');
var unusedBits = 8 - binaryString.length % 8;
if (unusedBits == 8) unusedBits = 0;
for (var i = 0; i <= unusedBits; i++) {
binaryString += '0';
}
var h = '';
for (var i = 0; i < binaryString.length - 1; i += 8) {
var b = binaryString.substr(i, 8);
var x = parseInt(b, 2).toString(16);
if (x.length == 1) x = '0' + x;
h += x;
}
this.hTLV = null;
this.isModified = true;
this.hV = '0' + unusedBits + h;
}; /**
* set ASN.1 TLV value(V) by an array of boolean<br/>
* @name setByBooleanArray
* @memberOf KJUR.asn1.DERBitString#
* @function
* @param {array} booleanArray array of boolean (ex. [true, false, true])
* @description
* NOTE: Trailing falses will be ignored in the ASN.1 DER Object.
* @example
* o = new KJUR.asn1.DERBitString();
* o.setByBooleanArray([false, true, false, true, true]);
*/
this.setByBooleanArray = function(booleanArray) {
var s = '';
for (var i = 0; i < booleanArray.length; i++) {
if (booleanArray[i] == true) {
s += '1';
} else {
s += '0';
}
}
this.setByBinaryString(s);
}; /**
* generate an array of falses with specified length<br/>
* @name newFalseArray
* @memberOf KJUR.asn1.DERBitString
* @function
* @param {Integer} nLength length of array to generate
* @return {array} array of boolean falses
* @description
* This static method may be useful to initialize boolean array.
* @example
* o = new KJUR.asn1.DERBitString();
* o.newFalseArray(3) &rarr; [false, false, false]
*/
this.newFalseArray = function(nLength) {
var a = new Array(nLength);
for (var i = 0; i < nLength; i++) {
a[i] = false;
}
return a;
}; this.getFreshValueHex = function() {
return this.hV;
}; if (typeof params != "undefined") {
if (typeof params == "string" && params.toLowerCase().match(/^[0-9a-f]+$/)) {
this.setHexValueIncludingUnusedBits(params);
} else if (typeof params['hex'] != "undefined") {
this.setHexValueIncludingUnusedBits(params['hex']);
} else if (typeof params['bin'] != "undefined") {
this.setByBinaryString(params['bin']);
} else if (typeof params['array'] != "undefined") {
this.setByBooleanArray(params['array']);
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERBitString, KJUR.asn1.ASN1Object); // ********************************************************************
/**
* class for ASN.1 DER OctetString<br/>
* @name KJUR.asn1.DEROctetString
* @class class for ASN.1 DER OctetString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* This class provides ASN.1 OctetString simple type.<br/>
* Supported "params" attributes are:
* <ul>
* <li>str - to set a string as a value</li>
* <li>hex - to set a hexadecimal string as a value</li>
* <li>obj - to set a encapsulated ASN.1 value by JSON object
* which is defined in {@link KJUR.asn1.ASN1Util.newObject}</li>
* </ul>
* NOTE: A parameter 'obj' have been supported
* for "OCTET STRING, encapsulates" structure.
* since asn1 1.0.11, jsrsasign 6.1.1 (2016-Sep-25).
* @see KJUR.asn1.DERAbstractString - superclass
* @example
* // default constructor
* o = new KJUR.asn1.DEROctetString();
* // initialize with string
* o = new KJUR.asn1.DEROctetString({str: "aaa"});
* // initialize with hexadecimal string
* o = new KJUR.asn1.DEROctetString({hex: "616161"});
* // initialize with ASN1Util.newObject argument
* o = new KJUR.asn1.DEROctetString({obj: {seq: [{int: 3}, {prnstr: 'aaa'}]}});
* // above generates a ASN.1 data like this:
* // OCTET STRING, encapsulates {
* // SEQUENCE {
* // INTEGER 3
* // PrintableString 'aaa'
* // }
* // }
*/
KJUR.asn1.DEROctetString = function(params) {
if (params !== undefined && typeof params.obj !== "undefined") {
var o = KJUR.asn1.ASN1Util.newObject(params.obj);
params.hex = o.getEncodedHex();
}
KJUR.asn1.DEROctetString.superclass.constructor.call(this, params);
this.hT = "04";
};
YAHOO.lang.extend(KJUR.asn1.DEROctetString, KJUR.asn1.DERAbstractString); // ********************************************************************
/**
* class for ASN.1 DER Null
* @name KJUR.asn1.DERNull
* @class class for ASN.1 DER Null
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERNull = function() {
KJUR.asn1.DERNull.superclass.constructor.call(this);
this.hT = "05";
this.hTLV = "0500";
};
YAHOO.lang.extend(KJUR.asn1.DERNull, KJUR.asn1.ASN1Object); // ********************************************************************
/**
* class for ASN.1 DER ObjectIdentifier
* @name KJUR.asn1.DERObjectIdentifier
* @class class for ASN.1 DER ObjectIdentifier
* @param {Array} params associative array of parameters (ex. {'oid': '2.5.4.5'})
* @extends KJUR.asn1.ASN1Object
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>oid - specify initial ASN.1 value(V) by a oid string (ex. 2.5.4.13)</li>
* <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li>
* </ul>
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERObjectIdentifier = function(params) {
var itox = function(i) {
var h = i.toString(16);
if (h.length == 1) h = '0' + h;
return h;
};
var roidtox = function(roid) {
var h = '';
var bi = new BigInteger(roid, 10);
var b = bi.toString(2);
var padLen = 7 - b.length % 7;
if (padLen == 7) padLen = 0;
var bPad = '';
for (var i = 0; i < padLen; i++) bPad += '0';
b = bPad + b;
for (var i = 0; i < b.length - 1; i += 7) {
var b8 = b.substr(i, 7);
if (i != b.length - 7) b8 = '1' + b8;
h += itox(parseInt(b8, 2));
}
return h;
}; KJUR.asn1.DERObjectIdentifier.superclass.constructor.call(this);
this.hT = "06"; /**
* set value by a hexadecimal string
* @name setValueHex
* @memberOf KJUR.asn1.DERObjectIdentifier#
* @function
* @param {String} newHexString hexadecimal value of OID bytes
*/
this.setValueHex = function(newHexString) {
this.hTLV = null;
this.isModified = true;
this.s = null;
this.hV = newHexString;
}; /**
* set value by a OID string<br/>
* @name setValueOidString
* @memberOf KJUR.asn1.DERObjectIdentifier#
* @function
* @param {String} oidString OID string (ex. 2.5.4.13)
* @example
* o = new KJUR.asn1.DERObjectIdentifier();
* o.setValueOidString("2.5.4.13");
*/
this.setValueOidString = function(oidString) {
if (! oidString.match(/^[0-9.]+$/)) {
throw "malformed oid string: " + oidString;
}
var h = '';
var a = oidString.split('.');
var i0 = parseInt(a[0]) * 40 + parseInt(a[1]);
h += itox(i0);
a.splice(0, 2);
for (var i = 0; i < a.length; i++) {
h += roidtox(a[i]);
}
this.hTLV = null;
this.isModified = true;
this.s = null;
this.hV = h;
}; /**
* set value by a OID name
* @name setValueName
* @memberOf KJUR.asn1.DERObjectIdentifier#
* @function
* @param {String} oidName OID name (ex. 'serverAuth')
* @since 1.0.1
* @description
* OID name shall be defined in 'KJUR.asn1.x509.OID.name2oidList'.
* Otherwise raise error.
* @example
* o = new KJUR.asn1.DERObjectIdentifier();
* o.setValueName("serverAuth");
*/
this.setValueName = function(oidName) {
var oid = KJUR.asn1.x509.OID.name2oid(oidName);
if (oid !== '') {
this.setValueOidString(oid);
} else {
throw "DERObjectIdentifier oidName undefined: " + oidName;
}
}; this.getFreshValueHex = function() {
return this.hV;
}; if (params !== undefined) {
if (typeof params === "string") {
if (params.match(/^[0-2].[0-9.]+$/)) {
this.setValueOidString(params);
} else {
this.setValueName(params);
}
} else if (params.oid !== undefined) {
this.setValueOidString(params.oid);
} else if (params.hex !== undefined) {
this.setValueHex(params.hex);
} else if (params.name !== undefined) {
this.setValueName(params.name);
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERObjectIdentifier, KJUR.asn1.ASN1Object); // ********************************************************************
/**
* class for ASN.1 DER Enumerated
* @name KJUR.asn1.DEREnumerated
* @class class for ASN.1 DER Enumerated
* @extends KJUR.asn1.ASN1Object
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>int - specify initial ASN.1 value(V) by integer value</li>
* <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li>
* </ul>
* NOTE: 'params' can be omitted.
* @example
* new KJUR.asn1.DEREnumerated(123);
* new KJUR.asn1.DEREnumerated({int: 123});
* new KJUR.asn1.DEREnumerated({hex: '1fad'});
*/
KJUR.asn1.DEREnumerated = function(params) {
KJUR.asn1.DEREnumerated.superclass.constructor.call(this);
this.hT = "0a"; /**
* set value by Tom Wu's BigInteger object
* @name setByBigInteger
* @memberOf KJUR.asn1.DEREnumerated#
* @function
* @param {BigInteger} bigIntegerValue to set
*/
this.setByBigInteger = function(bigIntegerValue) {
this.hTLV = null;
this.isModified = true;
this.hV = KJUR.asn1.ASN1Util.bigIntToMinTwosComplementsHex(bigIntegerValue);
}; /**
* set value by integer value
* @name setByInteger
* @memberOf KJUR.asn1.DEREnumerated#
* @function
* @param {Integer} integer value to set
*/
this.setByInteger = function(intValue) {
var bi = new BigInteger(String(intValue), 10);
this.setByBigInteger(bi);
}; /**
* set value by integer value
* @name setValueHex
* @memberOf KJUR.asn1.DEREnumerated#
* @function
* @param {String} hexadecimal string of integer value
* @description
* <br/>
* NOTE: Value shall be represented by minimum octet length of
* two's complement representation.
*/
this.setValueHex = function(newHexString) {
this.hV = newHexString;
}; this.getFreshValueHex = function() {
return this.hV;
}; if (typeof params != "undefined") {
if (typeof params['int'] != "undefined") {
this.setByInteger(params['int']);
} else if (typeof params == "number") {
this.setByInteger(params);
} else if (typeof params['hex'] != "undefined") {
this.setValueHex(params['hex']);
}
}
};
YAHOO.lang.extend(KJUR.asn1.DEREnumerated, KJUR.asn1.ASN1Object); // ********************************************************************
/**
* class for ASN.1 DER UTF8String
* @name KJUR.asn1.DERUTF8String
* @class class for ASN.1 DER UTF8String
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERUTF8String = function(params) {
KJUR.asn1.DERUTF8String.superclass.constructor.call(this, params);
this.hT = "0c";
};
YAHOO.lang.extend(KJUR.asn1.DERUTF8String, KJUR.asn1.DERAbstractString); // ********************************************************************
/**
* class for ASN.1 DER NumericString
* @name KJUR.asn1.DERNumericString
* @class class for ASN.1 DER NumericString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERNumericString = function(params) {
KJUR.asn1.DERNumericString.superclass.constructor.call(this, params);
this.hT = "12";
};
YAHOO.lang.extend(KJUR.asn1.DERNumericString, KJUR.asn1.DERAbstractString); // ********************************************************************
/**
* class for ASN.1 DER PrintableString
* @name KJUR.asn1.DERPrintableString
* @class class for ASN.1 DER PrintableString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERPrintableString = function(params) {
KJUR.asn1.DERPrintableString.superclass.constructor.call(this, params);
this.hT = "13";
};
YAHOO.lang.extend(KJUR.asn1.DERPrintableString, KJUR.asn1.DERAbstractString); // ********************************************************************
/**
* class for ASN.1 DER TeletexString
* @name KJUR.asn1.DERTeletexString
* @class class for ASN.1 DER TeletexString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERTeletexString = function(params) {
KJUR.asn1.DERTeletexString.superclass.constructor.call(this, params);
this.hT = "14";
};
YAHOO.lang.extend(KJUR.asn1.DERTeletexString, KJUR.asn1.DERAbstractString); // ********************************************************************
/**
* class for ASN.1 DER IA5String
* @name KJUR.asn1.DERIA5String
* @class class for ASN.1 DER IA5String
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERIA5String = function(params) {
KJUR.asn1.DERIA5String.superclass.constructor.call(this, params);
this.hT = "16";
};
YAHOO.lang.extend(KJUR.asn1.DERIA5String, KJUR.asn1.DERAbstractString); // ********************************************************************
/**
* class for ASN.1 DER UTCTime
* @name KJUR.asn1.DERUTCTime
* @class class for ASN.1 DER UTCTime
* @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'})
* @extends KJUR.asn1.DERAbstractTime
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>str - specify initial ASN.1 value(V) by a string (ex.'130430235959Z')</li>
* <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li>
* <li>date - specify Date object.</li>
* </ul>
* NOTE: 'params' can be omitted.
* <h4>EXAMPLES</h4>
* @example
* d1 = new KJUR.asn1.DERUTCTime();
* d1.setString('130430125959Z');
*
* d2 = new KJUR.asn1.DERUTCTime({'str': '130430125959Z'});
* d3 = new KJUR.asn1.DERUTCTime({'date': new Date(Date.UTC(2015, 0, 31, 0, 0, 0, 0))});
* d4 = new KJUR.asn1.DERUTCTime('130430125959Z');
*/
KJUR.asn1.DERUTCTime = function(params) {
KJUR.asn1.DERUTCTime.superclass.constructor.call(this, params);
this.hT = "17"; /**
* set value by a Date object<br/>
* @name setByDate
* @memberOf KJUR.asn1.DERUTCTime#
* @function
* @param {Date} dateObject Date object to set ASN.1 value(V)
* @example
* o = new KJUR.asn1.DERUTCTime();
* o.setByDate(new Date("2016/12/31"));
*/
this.setByDate = function(dateObject) {
this.hTLV = null;
this.isModified = true;
this.date = dateObject;
this.s = this.formatDate(this.date, 'utc');
this.hV = stohex(this.s);
}; this.getFreshValueHex = function() {
if (typeof this.date == "undefined" && typeof this.s == "undefined") {
this.date = new Date();
this.s = this.formatDate(this.date, 'utc');
this.hV = stohex(this.s);
}
return this.hV;
}; if (params !== undefined) {
if (params.str !== undefined) {
this.setString(params.str);
} else if (typeof params == "string" && params.match(/^[0-9]{12}Z$/)) {
this.setString(params);
} else if (params.hex !== undefined) {
this.setStringHex(params.hex);
} else if (params.date !== undefined) {
this.setByDate(params.date);
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERUTCTime, KJUR.asn1.DERAbstractTime); // ********************************************************************
/**
* class for ASN.1 DER GeneralizedTime
* @name KJUR.asn1.DERGeneralizedTime
* @class class for ASN.1 DER GeneralizedTime
* @param {Array} params associative array of parameters (ex. {'str': '20130430235959Z'})
* @property {Boolean} withMillis flag to show milliseconds or not
* @extends KJUR.asn1.DERAbstractTime
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>str - specify initial ASN.1 value(V) by a string (ex.'20130430235959Z')</li>
* <li>hex - specify initial ASN.1 value(V) by a hexadecimal string</li>
* <li>date - specify Date object.</li>
* <li>millis - specify flag to show milliseconds (from 1.0.6)</li>
* </ul>
* NOTE1: 'params' can be omitted.
* NOTE2: 'withMillis' property is supported from asn1 1.0.6.
*/
KJUR.asn1.DERGeneralizedTime = function(params) {
KJUR.asn1.DERGeneralizedTime.superclass.constructor.call(this, params);
this.hT = "18";
this.withMillis = false; /**
* set value by a Date object
* @name setByDate
* @memberOf KJUR.asn1.DERGeneralizedTime#
* @function
* @param {Date} dateObject Date object to set ASN.1 value(V)
* @example
* When you specify UTC time, use 'Date.UTC' method like this:<br/>
* o1 = new DERUTCTime();
* o1.setByDate(date);
*
* date = new Date(Date.UTC(2015, 0, 31, 23, 59, 59, 0)); #2015JAN31 23:59:59
*/
this.setByDate = function(dateObject) {
this.hTLV = null;
this.isModified = true;
this.date = dateObject;
this.s = this.formatDate(this.date, 'gen', this.withMillis);
this.hV = stohex(this.s);
}; this.getFreshValueHex = function() {
if (this.date === undefined && this.s === undefined) {
this.date = new Date();
this.s = this.formatDate(this.date, 'gen', this.withMillis);
this.hV = stohex(this.s);
}
return this.hV;
}; if (params !== undefined) {
if (params.str !== undefined) {
this.setString(params.str);
} else if (typeof params == "string" && params.match(/^[0-9]{14}Z$/)) {
this.setString(params);
} else if (params.hex !== undefined) {
this.setStringHex(params.hex);
} else if (params.date !== undefined) {
this.setByDate(params.date);
}
if (params.millis === true) {
this.withMillis = true;
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERGeneralizedTime, KJUR.asn1.DERAbstractTime); // ********************************************************************
/**
* class for ASN.1 DER Sequence
* @name KJUR.asn1.DERSequence
* @class class for ASN.1 DER Sequence
* @extends KJUR.asn1.DERAbstractStructured
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>array - specify array of ASN1Object to set elements of content</li>
* </ul>
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERSequence = function(params) {
KJUR.asn1.DERSequence.superclass.constructor.call(this, params);
this.hT = "30";
this.getFreshValueHex = function() {
var h = '';
for (var i = 0; i < this.asn1Array.length; i++) {
var asn1Obj = this.asn1Array[i];
h += asn1Obj.getEncodedHex();
}
this.hV = h;
return this.hV;
};
};
YAHOO.lang.extend(KJUR.asn1.DERSequence, KJUR.asn1.DERAbstractStructured); // ********************************************************************
/**
* class for ASN.1 DER Set
* @name KJUR.asn1.DERSet
* @class class for ASN.1 DER Set
* @extends KJUR.asn1.DERAbstractStructured
* @description
* <br/>
* As for argument 'params' for constructor, you can specify one of
* following properties:
* <ul>
* <li>array - specify array of ASN1Object to set elements of content</li>
* <li>sortflag - flag for sort (default: true). ASN.1 BER is not sorted in 'SET OF'.</li>
* </ul>
* NOTE1: 'params' can be omitted.<br/>
* NOTE2: sortflag is supported since 1.0.5.
*/
KJUR.asn1.DERSet = function(params) {
KJUR.asn1.DERSet.superclass.constructor.call(this, params);
this.hT = "31";
this.sortFlag = true; // item shall be sorted only in ASN.1 DER
this.getFreshValueHex = function() {
var a = new Array();
for (var i = 0; i < this.asn1Array.length; i++) {
var asn1Obj = this.asn1Array[i];
a.push(asn1Obj.getEncodedHex());
}
if (this.sortFlag == true) a.sort();
this.hV = a.join('');
return this.hV;
}; if (typeof params != "undefined") {
if (typeof params.sortflag != "undefined" &&
params.sortflag == false)
this.sortFlag = false;
}
};
YAHOO.lang.extend(KJUR.asn1.DERSet, KJUR.asn1.DERAbstractStructured); // ********************************************************************
/**
* class for ASN.1 DER TaggedObject
* @name KJUR.asn1.DERTaggedObject
* @class class for ASN.1 DER TaggedObject
* @extends KJUR.asn1.ASN1Object
* @description
* <br/>
* Parameter 'tagNoNex' is ASN.1 tag(T) value for this object.
* For example, if you find '[1]' tag in a ASN.1 dump,
* 'tagNoHex' will be 'a1'.
* <br/>
* As for optional argument 'params' for constructor, you can specify *ANY* of
* following properties:
* <ul>
* <li>explicit - specify true if this is explicit tag otherwise false
* (default is 'true').</li>
* <li>tag - specify tag (default is 'a0' which means [0])</li>
* <li>obj - specify ASN1Object which is tagged</li>
* </ul>
* @example
* d1 = new KJUR.asn1.DERUTF8String({'str':'a'});
* d2 = new KJUR.asn1.DERTaggedObject({'obj': d1});
* hex = d2.getEncodedHex();
*/
KJUR.asn1.DERTaggedObject = function(params) {
KJUR.asn1.DERTaggedObject.superclass.constructor.call(this);
this.hT = "a0";
this.hV = '';
this.isExplicit = true;
this.asn1Object = null; /**
* set value by an ASN1Object
* @name setString
* @memberOf KJUR.asn1.DERTaggedObject#
* @function
* @param {Boolean} isExplicitFlag flag for explicit/implicit tag
* @param {Integer} tagNoHex hexadecimal string of ASN.1 tag
* @param {ASN1Object} asn1Object ASN.1 to encapsulate
*/
this.setASN1Object = function(isExplicitFlag, tagNoHex, asn1Object) {
this.hT = tagNoHex;
this.isExplicit = isExplicitFlag;
this.asn1Object = asn1Object;
if (this.isExplicit) {
this.hV = this.asn1Object.getEncodedHex();
this.hTLV = null;
this.isModified = true;
} else {
this.hV = null;
this.hTLV = asn1Object.getEncodedHex();
this.hTLV = this.hTLV.replace(/^../, tagNoHex);
this.isModified = false;
}
}; this.getFreshValueHex = function() {
return this.hV;
}; if (typeof params != "undefined") {
if (typeof params['tag'] != "undefined") {
this.hT = params['tag'];
}
if (typeof params['explicit'] != "undefined") {
this.isExplicit = params['explicit'];
}
if (typeof params['obj'] != "undefined") {
this.asn1Object = params['obj'];
this.setASN1Object(this.isExplicit, this.hT, this.asn1Object);
}
}
};
YAHOO.lang.extend(KJUR.asn1.DERTaggedObject, KJUR.asn1.ASN1Object); /**
* Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object.
* This object is just a decorator for parsing the key parameter
* @param {string|Object} key - The key in string format, or an object containing
* the parameters needed to build a RSAKey object.
* @constructor
*/
var JSEncryptRSAKey = /** @class */ (function (_super) {
__extends(JSEncryptRSAKey, _super);
function JSEncryptRSAKey(key) {
var _this = _super.call(this) || this;
// Call the super constructor.
// RSAKey.call(this);
// If a key key was provided.
if (key) {
// If this is a string...
if (typeof key === "string") {
_this.parseKey(key);
}
else if (JSEncryptRSAKey.hasPrivateKeyProperty(key) ||
JSEncryptRSAKey.hasPublicKeyProperty(key)) {
// Set the values for the key.
_this.parsePropertiesFrom(key);
}
}
return _this;
}
/**
* Method to parse a pem encoded string containing both a public or private key.
* The method will translate the pem encoded string in a der encoded string and
* will parse private key and public key parameters. This method accepts public key
* in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1).
*
* @todo Check how many rsa formats use the same format of pkcs #1.
*
* The format is defined as:
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* it's possible to examine the structure of the keys obtained from openssl using
* an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/
* @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer
* @private
*/
JSEncryptRSAKey.prototype.parseKey = function (pem) {
try {
var modulus = 0;
var public_exponent = 0;
var reHex = /^\s*(?:[0-9A-Fa-f][0-9A-Fa-f]\s*)+$/;
var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem);
var asn1 = ASN1.decode(der);
// Fixes a bug with OpenSSL 1.0+ private keys
if (asn1.sub.length === 3) {
asn1 = asn1.sub[2].sub[0];
}
if (asn1.sub.length === 9) {
// Parse the private key.
modulus = asn1.sub[1].getHexStringValue(); // bigint
this.n = parseBigInt(modulus, 16);
public_exponent = asn1.sub[2].getHexStringValue(); // int
this.e = parseInt(public_exponent, 16);
var private_exponent = asn1.sub[3].getHexStringValue(); // bigint
this.d = parseBigInt(private_exponent, 16);
var prime1 = asn1.sub[4].getHexStringValue(); // bigint
this.p = parseBigInt(prime1, 16);
var prime2 = asn1.sub[5].getHexStringValue(); // bigint
this.q = parseBigInt(prime2, 16);
var exponent1 = asn1.sub[6].getHexStringValue(); // bigint
this.dmp1 = parseBigInt(exponent1, 16);
var exponent2 = asn1.sub[7].getHexStringValue(); // bigint
this.dmq1 = parseBigInt(exponent2, 16);
var coefficient = asn1.sub[8].getHexStringValue(); // bigint
this.coeff = parseBigInt(coefficient, 16);
}
else if (asn1.sub.length === 2) {
// Parse the public key.
var bit_string = asn1.sub[1];
var sequence = bit_string.sub[0];
modulus = sequence.sub[0].getHexStringValue();
this.n = parseBigInt(modulus, 16);
public_exponent = sequence.sub[1].getHexStringValue();
this.e = parseInt(public_exponent, 16);
}
else {
return false;
}
return true;
}
catch (ex) {
return false;
}
};
/**
* Translate rsa parameters in a hex encoded string representing the rsa key.
*
* The translation follow the ASN.1 notation :
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
* @returns {string} DER Encoded String representing the rsa private key
* @private
*/
JSEncryptRSAKey.prototype.getPrivateBaseKey = function () {
var options = {
array: [
new KJUR.asn1.DERInteger({ int: 0 }),
new KJUR.asn1.DERInteger({ bigint: this.n }),
new KJUR.asn1.DERInteger({ int: this.e }),
new KJUR.asn1.DERInteger({ bigint: this.d }),
new KJUR.asn1.DERInteger({ bigint: this.p }),
new KJUR.asn1.DERInteger({ bigint: this.q }),
new KJUR.asn1.DERInteger({ bigint: this.dmp1 }),
new KJUR.asn1.DERInteger({ bigint: this.dmq1 }),
new KJUR.asn1.DERInteger({ bigint: this.coeff })
]
};
var seq = new KJUR.asn1.DERSequence(options);
return seq.getEncodedHex();
};
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
JSEncryptRSAKey.prototype.getPrivateBaseKeyB64 = function () {
return hex2b64(this.getPrivateBaseKey());
};
/**
* Translate rsa parameters in a hex encoded string representing the rsa public key.
* The representation follow the ASN.1 notation :
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* @returns {string} DER Encoded String representing the rsa public key
* @private
*/
JSEncryptRSAKey.prototype.getPublicBaseKey = function () {
var first_sequence = new KJUR.asn1.DERSequence({
array: [
new KJUR.asn1.DERObjectIdentifier({ oid: "1.2.840.113549.1.1.1" }),
new KJUR.asn1.DERNull()
]
});
var second_sequence = new KJUR.asn1.DERSequence({
array: [
new KJUR.asn1.DERInteger({ bigint: this.n }),
new KJUR.asn1.DERInteger({ int: this.e })
]
});
var bit_string = new KJUR.asn1.DERBitString({
hex: "00" + second_sequence.getEncodedHex()
});
var seq = new KJUR.asn1.DERSequence({
array: [
first_sequence,
bit_string
]
});
return seq.getEncodedHex();
};
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
JSEncryptRSAKey.prototype.getPublicBaseKeyB64 = function () {
return hex2b64(this.getPublicBaseKey());
};
/**
* wrap the string in block of width chars. The default value for rsa keys is 64
* characters.
* @param {string} str the pem encoded string without header and footer
* @param {Number} [width=64] - the length the string has to be wrapped at
* @returns {string}
* @private
*/
JSEncryptRSAKey.wordwrap = function (str, width) {
width = width || 64;
if (!str) {
return str;
}
var regex = "(.{1," + width + "})( +|$\n?)|(.{1," + width + "})";
return str.match(RegExp(regex, "g")).join("\n");
};
/**
* Retrieve the pem encoded private key
* @returns {string} the pem encoded private key with header/footer
* @public
*/
JSEncryptRSAKey.prototype.getPrivateKey = function () {
var key = "-----BEGIN RSA PRIVATE KEY-----\n";
key += JSEncryptRSAKey.wordwrap(this.getPrivateBaseKeyB64()) + "\n";
key += "-----END RSA PRIVATE KEY-----";
return key;
};
/**
* Retrieve the pem encoded public key
* @returns {string} the pem encoded public key with header/footer
* @public
*/
JSEncryptRSAKey.prototype.getPublicKey = function () {
var key = "-----BEGIN PUBLIC KEY-----\n";
key += JSEncryptRSAKey.wordwrap(this.getPublicBaseKeyB64()) + "\n";
key += "-----END PUBLIC KEY-----";
return key;
};
/**
* Check if the object contains the necessary parameters to populate the rsa modulus
* and public exponent parameters.
* @param {Object} [obj={}] - An object that may contain the two public key
* parameters
* @returns {boolean} true if the object contains both the modulus and the public exponent
* properties (n and e)
* @todo check for types of n and e. N should be a parseable bigInt object, E should
* be a parseable integer number
* @private
*/
JSEncryptRSAKey.hasPublicKeyProperty = function (obj) {
obj = obj || {};
return (obj.hasOwnProperty("n") &&
obj.hasOwnProperty("e"));
};
/**
* Check if the object contains ALL the parameters of an RSA key.
* @param {Object} [obj={}] - An object that may contain nine rsa key
* parameters
* @returns {boolean} true if the object contains all the parameters needed
* @todo check for types of the parameters all the parameters but the public exponent
* should be parseable bigint objects, the public exponent should be a parseable integer number
* @private
*/
JSEncryptRSAKey.hasPrivateKeyProperty = function (obj) {
obj = obj || {};
return (obj.hasOwnProperty("n") &&
obj.hasOwnProperty("e") &&
obj.hasOwnProperty("d") &&
obj.hasOwnProperty("p") &&
obj.hasOwnProperty("q") &&
obj.hasOwnProperty("dmp1") &&
obj.hasOwnProperty("dmq1") &&
obj.hasOwnProperty("coeff"));
};
/**
* Parse the properties of obj in the current rsa object. Obj should AT LEAST
* include the modulus and public exponent (n, e) parameters.
* @param {Object} obj - the object containing rsa parameters
* @private
*/
JSEncryptRSAKey.prototype.parsePropertiesFrom = function (obj) {
this.n = obj.n;
this.e = obj.e;
if (obj.hasOwnProperty("d")) {
this.d = obj.d;
this.p = obj.p;
this.q = obj.q;
this.dmp1 = obj.dmp1;
this.dmq1 = obj.dmq1;
this.coeff = obj.coeff;
}
};
return JSEncryptRSAKey;
}(RSAKey)); /**
*
* @param {Object} [options = {}] - An object to customize JSEncrypt behaviour
* possible parameters are:
* - default_key_size {number} default: 1024 the key size in bit
* - default_public_exponent {string} default: '010001' the hexadecimal representation of the public exponent
* - log {boolean} default: false whether log warn/error or not
* @constructor
*/
var JSEncrypt = /** @class */ (function () {
function JSEncrypt(options) {
options = options || {};
this.default_key_size = parseInt(options.default_key_size, 10) || 1024;
this.default_public_exponent = options.default_public_exponent || "010001"; // 65537 default openssl public exponent for rsa key type
this.log = options.log || false;
// The private and public key.
this.key = null;
}
/**
* Method to set the rsa key parameter (one method is enough to set both the public
* and the private key, since the private key contains the public key paramenters)
* Log a warning if logs are enabled
* @param {Object|string} key the pem encoded string or an object (with or without header/footer)
* @public
*/
JSEncrypt.prototype.setKey = function (key) {
if (this.log && this.key) {
console.warn("A key was already set, overriding existing.");
}
this.key = new JSEncryptRSAKey(key);
};
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPrivateKey = function (privkey) {
// Create the key.
this.setKey(privkey);
};
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPublicKey = function (pubkey) {
// Sets the public key.
this.setKey(pubkey);
};
/**
* Proxy method for RSAKey object's decrypt, decrypt the string using the private
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} str base64 encoded crypted string to decrypt
* @return {string} the decrypted string
* @public
*/
JSEncrypt.prototype.decrypt = function (str) {
// Return the decrypted string.
try {
return this.getKey().decrypt(b64tohex(str));
}
catch (ex) {
return false;
}
};
/**
* Proxy method for RSAKey object's encrypt, encrypt the string using the public
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} str the string to encrypt
* @return {string} the encrypted string encoded in base64
* @public
*/
JSEncrypt.prototype.encrypt = function (str) {
// Return the encrypted string.
try {
return hex2b64(this.getKey().encrypt(str));
}
catch (ex) {
return false;
}
};
/**
* Proxy method for RSAKey object's sign.
* @param {string} str the string to sign
* @param {function} digestMethod hash method
* @param {string} digestName the name of the hash algorithm
* @return {string} the signature encoded in base64
* @public
*/
JSEncrypt.prototype.sign = function (str, digestMethod, digestName) {
// return the RSA signature of 'str' in 'hex' format.
try {
return hex2b64(this.getKey().sign(str, digestMethod, digestName));
}
catch (ex) {
return false;
}
};
/**
* Proxy method for RSAKey object's verify.
* @param {string} str the string to verify
* @param {string} signature the signature encoded in base64 to compare the string to
* @param {function} digestMethod hash method
* @return {boolean} whether the data and signature match
* @public
*/
JSEncrypt.prototype.verify = function (str, signature, digestMethod) {
// Return the decrypted 'digest' of the signature.
try {
return this.getKey().verify(str, b64tohex(signature), digestMethod);
}
catch (ex) {
return false;
}
};
/**
* Getter for the current JSEncryptRSAKey object. If it doesn't exists a new object
* will be created and returned
* @param {callback} [cb] the callback to be called if we want the key to be generated
* in an async fashion
* @returns {JSEncryptRSAKey} the JSEncryptRSAKey object
* @public
*/
JSEncrypt.prototype.getKey = function (cb) {
// Only create new if it does not exist.
if (!this.key) {
// Get a new private key.
this.key = new JSEncryptRSAKey();
if (cb && {}.toString.call(cb) === "[object Function]") {
this.key.generateAsync(this.default_key_size, this.default_public_exponent, cb);
return;
}
// Generate the key.
this.key.generate(this.default_key_size, this.default_public_exponent);
}
return this.key;
};
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKey = function () {
// Return the private representation of this key.
return this.getKey().getPrivateKey();
};
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKeyB64 = function () {
// Return the private representation of this key.
return this.getKey().getPrivateBaseKeyB64();
};
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPublicKey = function () {
// Return the private representation of this key.
return this.getKey().getPublicKey();
};
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPublicKeyB64 = function () {
// Return the private representation of this key.
return this.getKey().getPublicBaseKeyB64();
};
JSEncrypt.version = "3.0.0-rc.1";
return JSEncrypt;
}()); window.JSEncrypt = JSEncrypt; exports.JSEncrypt = JSEncrypt;
exports.default = JSEncrypt; Object.defineProperty(exports, '__esModule', { value: true }); })));

输出如下:

public encrypted:  T2LFtY3dF_b6OBO07BN-3LtMSEBZqDukovDZ4HGCff8wosvlowf6IFJ3U7LFBIeHfiHBKiFuAV8-pFltCfTXtA4AwgVUnwbBMBWBfIJiLDi02ev30V-5BcYEuSF-cEdnSUd7WecrX4rHhzYLueGuj8H6c7RRbSbrJ6_3EFfU-K0
private uncrypted: i like JS
private uncrypted: i like php
private uncrypted: i like java

PS:

https://github.com/travist/jsencrypt

https://www.cnblogs.com/Lrn14616/p/10154529.html

https://blog.csdn.net/MrSpirit/article/details/79066537

https://my.oschina.net/gKWW0kOYB/blog/1836342

https://blog.csdn.net/qq_28027903/article/details/73289156

https://www.cnblogs.com/twilight-sam/p/5549121.html

https://www.cnblogs.com/roam/p/5974061.html

https://www.cnblogs.com/jxust-jiege666/p/8733204.html

Java & PHP & Javascript 通用 RSA 加密 解密 (长字符串)的更多相关文章

  1. RSA 加密 解密 (长字符串) JAVA JS版本加解密

    系统与系统的数据交互中,有些敏感数据是不能直接明文传输的,所以在发送数据之前要进行加密,在接收到数据时进行解密处理:然而由于系统与系统之间的开发语言不同. 本次需求是生成二维码是通过java生成,由p ...

  2. C# javascript 采用 RSA 加密解密

    C# javascript 采用 RSA 加密解密 1.C#提供公钥 2.javascript用公钥加密 3.C#用私钥解密 4.javascript 类库 https://www.pidder.de ...

  3. RSA加密解密与加签验签

    RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.1987年7月首次在美国公布 ...

  4. 兼容javascript和C#的RSA加密解密算法,对web提交的数据进行加密传输

    Web应用中往往涉及到敏感的数据,由于HTTP协议以明文的形式与服务器进行交互,因此可以通过截获请求的数据包进行分析来盗取有用的信息.虽然https可以对传输的数据进行加密,但是必须要申请证书(一般都 ...

  5. C# Java间进行RSA加密解密交互(三)

    原文:C# Java间进行RSA加密解密交互(三) 接着前面一篇C# Java间进行RSA加密解密交互(二)说吧,在上篇中为了实现 /** * RSA加密 * @param text--待加密的明文 ...

  6. RSA加密解密及数字签名Java实现--转

    RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.当时他们三人都在麻省理工学院 ...

  7. (转)RSA加密解密及数字签名Java实现

    转:http://my.oschina.net/jiangli0502/blog/171263?fromerr=hc4izFe2  RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rives ...

  8. C# 与JAVA 的RSA 加密解密交互,互通,C#使用BouncyCastle来实现私钥加密,公钥解密的方法

    因为C#的RSA加密解密只有公钥加密,私钥解密,没有私钥加密,公钥解密.在网上查了很久也没有很好的实现.BouncyCastle的文档少之又少.很多人可能会说,C#也是可以的,通过Biginteger ...

  9. C# Java间进行RSA加密解密交互

    原文:C# Java间进行RSA加密解密交互 这里,讲一下RSA算法加解密在C#和Java之间交互的问题,这两天纠结了很久,也看了很多其他人写的文章,颇受裨益,但没能解决我的实际问题,终于,还是被我捣 ...

随机推荐

  1. 深入理解FM和FFM

    公司主要用这两个模型来进行广告预测. http://geek.csdn.net/news/detail/59793 FM主要是处理在onehot之后,矩阵稀疏的问题. 在引入fm之后,能够更好的处理特 ...

  2. 向excel中循环插入值

    import xlrd #导入excel读模块 from xlutils import copy #导入copy模块 book = xlrd.open_workbook('tb_base_buildi ...

  3. 关于ionic2打包android时gradle下载不了的解决方法(附:简单优化启动速度彩蛋)

    问题 之前在使用ionic2时使用建立android平台命令或者编译时,总是会在获取gradle时卡住,等很久进度也不变化,导致命令超时失败.于是经过查阅资料和自己实践测试,总结出以下办法. 方法 其 ...

  4. jquery美刀的释放

    jQuery 和其他 JavaScript 框架 正如您已经了解到的,jQuery 使用 $ 符号作为 jQuery 的简写. 如果其他 JavaScript 框架也使用 $ 符号作为简写怎么办? 其 ...

  5. ASP.NET WebApi 基于分布式Session方式实现Token签名认证

    一.课程介绍 明人不说暗话,跟着阿笨一起学玩WebApi!开发提供数据的WebApi服务,最重要的是数据的安全性.那么对于我们来说,如何确保数据的安全将会是需要思考的问题.在ASP.NETWebSer ...

  6. C# Monitor实现

    Monitor的code如下,非常简单: public static class Monitor { public static extern void Enter(Object obj); publ ...

  7. PyCharm使用Anaconda新建的环境

    首先,创建一个环境用来安装Tensorflow: conda create -n tensorflow python=3.5.6 安装以后,在Anaconda Navigator可以看到已经增加了一个 ...

  8. Python 3安装MySQLdb

    Python 2安装的是mysql-python,Python 3安装mysql-python以后,仍然不能import MySQLdb,原来Python 3应该安装mysqlclient,就可以im ...

  9. Mybatis抛出:Cannot obtain primary key information from the database, generated objects may be incomplete

    使用 mybatis generator 生成pojo.dao.mapper时,可能会遇到 Cannot obtain primary key information from the databas ...

  10. Nodejs 使用 es module (import/export)