对于方阵A,如果为非奇异方阵,则存在逆矩阵inv(A)
对于奇异矩阵或者非方阵,并不存在逆矩阵,但可以使用pinv(A)求其伪逆

 

inv:

 
inv(A)*B
实际上可以写成A\B
B*inv(A)
实际上可以写成B/A
这样比求逆之后带入精度要高

A\B=pinv(A)*B

A/B=A*pinv(B)
 

pinv:

 
X=pinv(A),X=pinv(A,tol),其中tol为误差

pinv是求广义逆

先搞清楚什么是伪逆。
对于方阵A,若有方阵B,使得:A·B=B·A=I,则称B为A的逆矩阵。
如果矩阵A不是一个方阵,或者A是一个非满秩的方阵时,矩阵A没有逆矩阵,但可以找到一个与A的转置矩阵A'同型的矩阵B,使得:
     A·B·A=A        
      B·A·B=B
此时称矩阵B为矩阵A的伪逆,也称为广义逆矩阵。因此伪逆阵与原阵相乘不一定是单位阵。

当A可逆时,B就是A的逆矩阵,否则就是广义逆。

满足上面关系的A,B矩阵,有很多和逆矩阵相似的性质。

如果A为非奇异矩阵的话,虽然计算结果相同,但是pinv会消耗大量的计算时间。

在其他情况下,pinv具有inv的部分特性,但是不完全相同。

matlab:inv,pinv逆与伪逆的更多相关文章

  1. 学习笔记DL007:Moore-Penrose伪逆,迹运算,行列式,主成分分析PCA

    Moore-Penrose伪逆(pseudoinverse). 非方矩阵,逆矩阵没有定义.矩阵A的左逆B求解线性方程Ax=y.两边左乘左逆B,x=By.可能无法设计唯一映射将A映射到B.矩阵A行数大于 ...

  2. 【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)

    title: [线性代数]7-3:对角化和伪逆(Diagonalization and the Pseudoinverse) categories: Mathematic Linear Algebra ...

  3. 51nod 1019 逆序数(逆序数+离散化)

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是 ...

  4. 二叉树求逆序对(伪AC 23333)

    成链的时候 是最坏情况 O(n^2)的复杂度呢! 按照输入的数据 一个一个的插入建树 然后维护左右儿子的个数  (我们规定, 左儿子 小于  父亲  右儿子大于父亲) 往左走 说明存在逆序对 逆序对的 ...

  5. 归并求逆序数(逆序对数) && 线段树求逆序数

    Brainman Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u   Java c ...

  6. 逆序对&求逆序对

    题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定 ...

  7. C#数据结构与算法系列(十):逆波兰计算器——逆波兰表达式(后缀表达式)

    1.介绍 后缀表达式又称逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后 2.举例说明 (3+4)*5-6对应的后缀表达式就是3 4 +5 * 6 - 3.示例 输入一个逆波兰表达式(后缀表达 ...

  8. MATLAB学习笔记(二)——主要是MATLAB的矩阵知识

    PS:主要是讲解矩阵的相应的实现方法,其实MATLAB的很大一部分的优势,就是集成了矩阵级别的运算,并以此为特点,可以进行多维空间上的验证. 让我们懂得了原来线性代数如此有用= - =. (一)MAT ...

  9. matlab矩阵的表示和简单操作

    原地址:http://www.cnblogs.com/Ran_Ran/archive/2010/12/11/1903070.html 一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必 ...

随机推荐

  1. hadoop 核心概念及入门

    Hadoop Hadoop背景 什么是HADOOP HADOOP是apache旗下的一套开源软件平台HADOOP提供利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理,HADOOP的核 ...

  2. log4j.appender.file.DatePattern

    DailyRollingFileAppender是日志记录软件包Log4J中的一个Appender,它能够按一定的频度滚动日志记录文件. 我们可以按下面的方式配置DailyRollingFileApp ...

  3. 【Spring】19、spring配置数据源的4种方式

    不管采用何种持久化技术,都需要定义数据源.Spring中提供了4种不同形式的数据源配置方式: spring自带的数据源(DriverManagerDataSource),DBCP数据源,C3P0数据源 ...

  4. Linux常用基本命令:grep-从文件或者管道中筛选匹配的行

    grep命令 作用:从文本文件或管道数据流中筛选匹配的行及数据,配合正则表达式一起使用,功能更加强大. 格式: grep [options] [pattern] [file] 1,匹配包含" ...

  5. 14-补充内容:MySQl创建用户和授权

    [转]14-补充内容:MySQl创建用户和授权 权限管理 我们知道我们的最高权限管理者是root用户,它拥有着最高的权限操作.包括select.update.delete.update.grant等操 ...

  6. php soapclient 超时 设置

    用php的soapclient,默认是60秒.可在php.ini里配置, 重启APache 或者在PHP代码里做设置 ini_set('default_socket_timeout', 300);// ...

  7. 正则与python的re模块

    一.正则表达式的语法 正则表达式使用反斜杠字符('\')来表示特殊的形式或者来允许使用特殊的字符而不要启用它们特殊的含义.这与字符串字面值中相同目的的相同字符的用法冲突:例如,要匹配一个反斜线字面值, ...

  8. jquery绑定点击事件的三种写法

    一.用jquery动态绑定点击事件的写法 部分代码: <script type="text/javascript"> $(document).ready(functio ...

  9. JS中数组去重的九方法

            数组去重方法        方法一:运用set结构特点:存储的数据没有重复的,结果为对象,再用Array.from()转换成数组   var arr = [1,1,2,1,3,4,5] ...

  10. 程序员Web面试之jQuery

    又到了一年一度的毕业季了,青春散场,却等待下一场开幕. 在求职大军中,IT行业的程序员.码农是工科类大学生的热门选择之一, 尤其是近几年Web的如火如荼,更是吸引了成千上万的程序员投身其中追求自己的梦 ...