CF724F Uniformly Branched Trees

有根树可以统计。无根树难以统计。因为可以换根。

所以不让换根:只要两个无根树在重心位置不同构,就一定不同构

每个本质不同的树在重心位置统计上。

f[i][j][k]i个点根节点度数j,最大子树不超过k。枚举k大小的子树个数转移。

重心两个?

特殊考虑。两端f[n/2][d-1][n/2-1]=x,x*(x-1)/2+x

边界考虑到。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
int mod,n,d;
int f[N][][N];
int jie[],inv[];
int qm(int x,int y){
int ret=;while(y){
if(y&) ret=(ll)ret*x%mod;x=(ll)x*x%mod;y>>=;
}return ret;
}
int dp(int i,int j,int k){
//cout<<" dp "<<i<<" "<<j<<" "<<k<<endl;
if(f[i][j][k]!=-) return f[i][j][k];
if(i==) {
if(j==d-||!j) return f[i][j][k]=;
return f[i][j][k]=;
}
if(i==){
if(k==&&j==) return f[i][j][k]=;
else return f[i][j][k]=;
}
if(j>i-) return f[i][j][k]=;
if(i>&&k==) return f[i][j][k]=; int C=;
int ret=;
int tmp=dp(k,d-,k-);
// cout<<" tmp "<<tmp<<" i j k "<<i<<" "<<j<<" "<<k<<endl;
for(reg m=;m<=j&&m*k<=i-;++m){
ret=(ret+(ll)dp(i-m*k,j-m,k-)*C%mod*inv[m]%mod)%mod;
C=(ll)C*(tmp-+m+)%mod;
}
//cout<<" ret "<<ret<<endl;
return f[i][j][k]=ret;
}
int main(){
rd(n);rd(d);rd(mod);
if(n<=){
puts("");return ;
}
memset(f,-,sizeof f);
jie[]=;
for(reg i=;i<=;++i) jie[i]=(ll)jie[i-]*i%mod;
inv[]=qm(jie[],mod-);
for(reg i=;i>=;--i) inv[i]=(ll)inv[i+]*(i+)%mod;
ll ans=;
ans=(ans+dp(n,d,(n-)/));
// cout<<"ans1 ------"<<ans<<endl;
if(n%==){
ll tmp=;
tmp=dp(n/,d-,n/-);
ans=(ans+(tmp*(tmp+)/%mod))%mod;
}
printf("%I64d",ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/3 18:21:10
*/

在某个位置为代表统计所有情况,

既可以不重不漏,还可以有的放矢

CF724F Uniformly Branched Trees的更多相关文章

  1. 【CF724F】Uniformly Branched Trees 动态规划

    [CF724F]Uniformly Branched Trees 题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. $n\le 1000,d\le 10$. 题解:先考虑有根树的版 ...

  2. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) F - Uniformly Branched Trees 无根树->有根树+dp

    F - Uniformly Branched Trees #include<bits/stdc++.h> #define LL long long #define fi first #de ...

  3. 【CF724F】Uniformly Branched Trees

    题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. n≤1000,d≤10n≤1000,d≤10. 题解: 这题真的是一道非常好的题 首先考虑有根树 定义f[i][j][k]表示i个 ...

  4. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  5. 高考集训讲课(To 高一)

    高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...

  6. 『正睿OI 2019SC Day6』

    动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...

  7. Todo List

    Contest 11.13 2016ACM/ICPC亚洲区青岛站(5/13, solved 7/13) Training 11.06 2016年中国大学生程序设计竞赛(合肥)(solved 6/10) ...

  8. [matlab] 7.快速搜索随机树(RRT---Rapidly-exploring Random Trees) 路径规划

    RRT是一种多维空间中有效率的规划方法.它以一个初始点作为根节点,通过随机采样增加叶子节点的方式,生成一个随机扩展树,当随机树中的叶子节点包含了目标点或进入了目标区域,便可以在随机树中找到一条由从初始 ...

  9. hud 1633 Orchard Trees 点是否在三角形内模板 *

    Orchard Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. SQL调优日记--并行等待的原理和问题排查

    概述 今天处理项目,客户反应数据库在某个时间段,反应特别慢.需要我们提供一些优化建议. 现象 由于是特定的时间段慢,排查起来就比较方便.直接查看这个时间段数据库的等待情况.查看等待类型发现了大量的CX ...

  2. SNMP基础知识

    注:本篇博客并非原创,仅是学习笔记 1. 概述1.1 诞生背景1.2 SNMP简介1.3 版本1.4 术语1.5 网络结构1.6 MIB简介2. Linux的SNMP安装 1. 概述 1.1 诞生背景 ...

  3. python-知识回顾-16

    知识回顾 小数据池:int -5~256str 特殊字符,*数字20 ascii : 8位 1字节 表示1个字符unicode 32位 4个字节 表示一个字符utf- 8 1个英文 8位,1个字节 欧 ...

  4. Pair Project1:电梯控制程序

    12061199 程刚  &&   12061204 黎柱金 一.结对编程的优缺点 结对编程相对于一个人的编程有更多的优点,缺点也有很大不同. 首先,优点: 结队可以让两人可以更好的协 ...

  5. Finished yeah!

    终于到了最后的博客阶段,这时候才知道博客此时此刻是多么的惬意,它成了书写心声的自由平台!耗时一天完成这作业说起来也是蛮辛苦的,编译器需要新装,IDE需要熟悉,当然最主要的是之前浅入浅出的C++功底在此 ...

  6. 【个人博客作业Week7】软件工程团队项目一轮迭代感想与反思

    (发布晚原因:发到团队博客了 一.关于银弹 在佛瑞德·布鲁克斯于1986年发布的<没有银弹:软件工程的本质性与附属性工作>这篇软件工程的经典论文中,作者向我们讲述了软件工程没有银弹这样的理 ...

  7. Linux期末总结

    Linux内核学习总结 1.计算机是如何工作的? 存储程序计算机工作模型 X86汇编基础 汇编一个简单的C程序分析其汇编指令执行过程 2.操作系统是如何工作的? 三个法宝——存储程序计算机.函数调用堆 ...

  8. 分布式版本控制系统Git的安装与使用(作业2)

    (本次作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103) 分布式版本控制系统Git的安装与使用 一.安装Git b ...

  9. k8s master 节点加入到可以调配node节点中的命令

    kubectl taint nodes --all node-role.kubernetes.io/master- 应该就可以了  效果再观察 效果为

  10. shell获取帮助

    一.內建命令与外部命令 1.內建命令 内建命令是 shell 程序的一部分,是一些比较简单的 Linux 系统命令,这些命令是写在bash源码的builtins里面的,由 shell 程序识别并在 s ...