官方说法:

work_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before writing to temporary disk files. The value defaults to four megabytes (4MB). Note that for a complex query, several sort or hash operations might be running in parallel; each operation will be allowed to use as much memory as this value specifies before it starts to write data into temporary files. Also, several running sessions could be doing such operations concurrently. Therefore, the total memory used could be many times the value of work_mem; it is necessary to keep this fact in mind when choosing the value. Sort operations are used for ORDER BYDISTINCT, and merge joins. Hash tables are used in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.

声明内部排序操作和Hash表在开始使用临时磁盘文件之前使用的内存限制。 缺省数值是4兆字节(4MB)。请注意对于复杂的查询, 可能会并发行若干排序或者散列表操作;每个都会被允许使用这个参数获得这么多内存, 然后才会开始求助于临时文件。同样,好几个正在运行的会话可能会同时进行排序操作。 因此使用的总内存可能是work_mem的好几倍。 当选择这个值的时候,必须记住这个事实。 ORDER BYDISTINCT和融合连接都要用到排序操作。 Hash表在散列连接、散列为基础的聚合、散列为基础的IN子查询处理中都要用到。

生成一百万条记录

[postgres@sht-sgmhadoopdn- ~]$ perl -e '@c=("a".."z","A".."Z",0..9); print join("",map{$c[rand@c]}10..20+rand(40))."\n" for 1..1000000' > /tmp/random_strings
[postgres@sht-sgmhadoopdn- ~]$ ls -lh /tmp/random_strings
-rw-r--r-- postgres dba 31M Nov : /tmp/random_strings

创建对应表结构并导入数据

edbstore=# CREATE TABLE test (id serial PRIMARY KEY, random_text text );
CREATE TABLE
edbstore=# \d test
Table "public.test"
Column | Type | Modifiers
-------------+---------+---------------------------------------------------
id | integer | not null default nextval('test_id_seq'::regclass)
random_text | text |
Indexes:
"test_pkey" PRIMARY KEY, btree (id) edbstore=# \d
List of relations
Schema | Name | Type | Owner
--------+-------------+----------+----------
public | tb1 | table | postgres
public | test | table | postgres
public | test_id_seq | sequence | postgres
(3 rows) edbstore=# copy test (random_text) FROM '/tmp/random_strings';
COPY 1000000
edbstore=# select * from test limit 10;
id | random_text
----+-------------------------------------------------
1 | CKQyHTYH5VjeHRUC6YYLF8H5S
2 | G22uBhFmrlA17wTUzf
3 | ey6kX7I6etknzhEFCL
4 | 8LB6navSS8VyoIeqbJBx9RqB3O4AI8GIFExnM7s
5 | bvYt4dKGSiAun6yA5Q7owlKWJGEgD0nlxoBRZm8B
6 | qk1RfhXHwo2PNpbI4
7 | rnPterTw1a3Z3DoL8rhzlltUKb5
8 | l2TrrbDsBkAa5V5ZBKFE59k4T7sDKA58yrS0mJNssl7CJnF
9 | xM9HPgq6QMRsx1aOTqM0LPRQRYkQy50uV
10 | viSJ4p1i3O0dY8tKei3x
(10 rows)

通过每次获取不通的数据量来观察每次explain的执行方式

edbstore=# show work_mem;
work_mem
----------
1MB
(1 row) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 10 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Sort (cost=8.73..8.75 rows=9 width=35) (actual time=0.188..0.202 rows=10 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 25kB
-> Index Scan using test_pkey on test (cost=0.42..8.58 rows=9 width=35) (actual time=0.018..0.037 rows=10 loops=1)
Index Cond: (id <= 10)
Planning time: 1.435 ms
Execution time: 0.294 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 100 ORDER BY random_text ASC;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Sort (cost=13.50..13.75 rows=100 width=35) (actual time=0.870..1.027 rows=100 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 34kB
-> Index Scan using test_pkey on test (cost=0.42..10.18 rows=100 width=35) (actual time=0.022..0.218 rows=100 loops=1)
Index Cond: (id <= 100)
Planning time: 0.286 ms
Execution time: 1.248 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
Sort (cost=92.57..95.10 rows=1011 width=35) (actual time=8.846..10.251 rows=1000 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 112kB
-> Index Scan using test_pkey on test (cost=0.42..42.12 rows=1011 width=35) (actual time=0.027..2.474 rows=1000 loops=1)
Index Cond: (id <= 1000)
Planning time: 0.286 ms
Execution time: 11.584 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 10000 ORDER BY random_text ASC;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Sort (cost=1049.39..1074.68 rows=10116 width=35) (actual time=144.963..160.943 rows=10000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 448kB
-> Index Scan using test_pkey on test (cost=0.42..376.45 rows=10116 width=35) (actual time=0.063..22.225 rows=10000 loops=1)
Index Cond: (id <= 10000)
Planning time: 0.149 ms
Execution time: 173.841 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 100000 ORDER BY random_text ASC;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Sort (cost=17477.39..17727.70 rows=100122 width=35) (actual time=1325.789..1706.516 rows=100000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 4440kB
-> Index Scan using test_pkey on test (cost=0.42..3680.56 rows=100122 width=35) (actual time=0.088..214.490 rows=100000 loops=1)
Index Cond: (id <= 100000)
Planning time: 0.147 ms
Execution time: 1822.008 ms
(7 rows) edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000000 ORDER BY random_text ASC;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Sort (cost=202426.34..204926.34 rows=1000000 width=35) (actual time=8703.143..10160.421 rows=1000000 loops=1)
Sort Key: random_text
Sort Method: external merge Disk: 44504kB
-> Seq Scan on test (cost=0.00..20732.00 rows=1000000 width=35) (actual time=0.024..1021.491 rows=1000000 loops=1)
Filter: (id <= 1000000)
Planning time: 0.316 ms
Execution time: 10577.464 ms
(7 rows)
row Sort Method Execution time
10 quicksort  Memory: 25kB 0.294 ms
100 Sort Method: quicksort  Memory: 34kB 1.248 ms
1000 Sort Method: quicksort  Memory: 112kB 11.584 ms
10000 Sort Method: external merge  Disk: 448kB 173.841 ms
100000 Sort Method: external merge  Disk: 4440kB 1822.008 ms
1000000 Sort Method: external merge  Disk: 44504kB 10577.464 ms

通过上图我们可以看到,当sort的数据大于一万条时,explain显示排序方法从 quicksort in memory, 到external merge disk method,说明此时的work_mem的大小不能满足我们在内存的sort和hash表的需求。此时我们将work_mem参数的值调大

edbstore=# set work_mem="500MB";
SET
edbstore=# EXPLAIN analyze SELECT * FROM test WHERE id <= 1000000 ORDER BY random_text ASC;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Sort (cost=120389.84..122889.84 rows=1000000 width=35) (actual time=6232.270..6884.121 rows=1000000 loops=1)
Sort Key: random_text
Sort Method: quicksort Memory: 112847kB
-> Seq Scan on test (cost=0.00..20732.00 rows=1000000 width=35) (actual time=0.015..659.035 rows=1000000 loops=1)
Filter: (id <= 1000000)
Planning time: 0.125 ms
Execution time: 7302.621 ms
(7 rows)
row Sort Method Execution time
1000000 quicksort  Memory: 112847kB 6887.851 ms

可以发现sort method从merg disk变成quicksort in memory。

https://www.depesz.com/2011/07/03/understanding-postgresql-conf-work_mem/

PostgreSQL work_mem理解的更多相关文章

  1. postgresql spi开发笔记

    #include "postgres.h" #include "fmgr.h" #include <string.h> #ifdef PG_MODU ...

  2. GitLab在Centos下的安装步骤

    第一步:(安装工具包) sudo yum install curl openssh-server postfix cronie sudo service postfix start sudo chkc ...

  3. Jenkins + Ansible + Gitlab之gitlab篇

    前言 持续交付 版本控制器:Gitlab.GitHub 持续集成工具:jenkins 部署工具:ansible  课程安排 Gitlab搭建与流程使用 Ansible环境配置与Playbook编写规范 ...

  4. 搞IT,算法编程不错的学习网址 & 一些专栏博客大神的地址(汇总)

    博客专栏大神 王晓华(算法的乐趣) 算法系列:http://blog.csdn.net/orbit/article/category/830251 PostgreSQL深入理解内核系列:http:// ...

  5. 二、CentOS 7安装部署GitLab服务器(解决邮箱发信问题)

    一.环境安装(10.0.0) 1.安装依赖软件 yum -y install policycoreutils policycoreutils-python openssh-server openssh ...

  6. PostgreSQL Replication之第一章 理解复制概念(1)

    PostgreSQL Replication系列翻译自PostgreSQL Replication一书 在本章中,将会介绍不同的复制概念,您会了解哪些类型的复制对哪一种实用场景是最合适的. 在本章的最 ...

  7. PostgreSQL Replication之第七章 理解Linux高可用(1)

    高可用(HA)是工业长期持续的,不间断的服务.在本章,您将了解高可用软件的历史,概念和实现与PostgreSQL复制和高可用之间的关系. 本章将详细地讲述如下主题: •理解高可用性的目的 •衡量可用性 ...

  8. PostgreSQL Replication之第三章 理解即时恢复(1)

    到现在为止,您已经掌握了一定的理论.因为生活不仅由理论组成(它可能同样重要),是时候深入实际的工作了. 本章的目标是让您明白如何恢复数据到一个给定的时间点.当您的系统崩溃或者有人意外地删除了一个表,不 ...

  9. PostgreSQL Replication之第二章 理解PostgreSQL的事务日志(5)

    2.5 XLOG的内部结构 我们将使用事务贯穿本书,并让您在技术层面上更深地洞察事情是如果工作的,我们已经增加了这部分专门处理XLOG的内部工作机制.我们会尽量避免前往下降到C级,因为这将超出本书的范 ...

随机推荐

  1. @ConfigurationProperties + @EnableConfigurationProperties

    1.ConfigurationProperties 在类上通过@ConfigurationProperties注解声明当前类为属性读取类. 举例: @ConfigurationProperties(p ...

  2. linux 进程间通信——内存共享映射mmap和munmap

    IPC三种通信机制是指:信号量.共享内存.消息队列,   信号量:通过操作系统中的PV操作来实现: 共享内存:申请一块内存,进程A往共享内存中写,其他的进程就可以通过读出共享内存中的内容来获取进程A所 ...

  3. cocos creator 动态创建精灵

    var node = new cc.Node();var sprite = node.addComponent(cc.Sprite);sprite.spriteFrame = new cc.Sprit ...

  4. CentOS 7 源码编译MariaDB

    下载源码包 安装 SCL  devtoolset-7 SCL(Software Collections)可以让你在同一个操作系统上安装和使用多个版本的软件,而不会影响整个系统的安装包.SCL为社区的以 ...

  5. redis解决高并发下脏读问题

    //解决并发情况下卡脏读的问题 protected function BingFa($mobile, $ent_id){ $obj = EnterpriseMembers::getNewMemberC ...

  6. Tomcat增加Context配置不带项目名访问导致启动的时候项目加载两次

    eclipse发布web应用至tomcat,默认方式下访问该项目是需要带项目名称的,例http://localhost:8080/myapp/.现在需要改成这样访问http://localhost.修 ...

  7. python locust 性能测试:locust 参数化(list) ---循环取数据,数据可重复使用

    from locust import TaskSet, task, HttpLocust class UserBehavior(TaskSet): def on_start(self): # 当模拟用 ...

  8. Applet程序组件与AJAX技术

    Applet 定义 Applet是一种运行于Web客户端环境下的Java程序组件. 工作原理 Applet以代码的形式嵌入Web页面中,用标签<applet></applet> ...

  9. AES,BigInteger,MD5加密

    http://tool.oschina.net/apidocs/apidoc?api=jdk-zh package cn.com.gome.cashier.web; import java.lang. ...

  10. git push 远程新分支

    git clone #从远程克隆 进行一些编辑后 git add . git commit -m "xxx" git push #将master推送到master git chec ...