『素数 Prime判定和线性欧拉筛法 The sieve of Euler』
<更新提示>
<第一次更新>
<正文>
素数(Prime)及判定
定义
素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数。
1既不是素数也不是合数。
判定
如何判定一个数是否是素数呢?显然,我们可以枚举这个数的因数,如果存在除了它本身和1以外的因数,那么这个数就是素数。
在枚举时,有一个很简单的优化:一个合数\(n\)必有一个小于等于\(\sqrt{n}\)的因数。
证明如下:
假设一个合数\(n\)没有小于等于\(\sqrt{n}\)的因数。
由于\(n\)为合数,所以除了\(n\)与\(1\)以外,它至少还有两个因数\(p_1(p_1>\sqrt{n})\)和\(p_2(p_2>\sqrt{n})\),满足\(p_1p_2=n\)。
与\(p_1>\sqrt{n},p_2>\sqrt{n}\)矛盾,故假设不成立。
所以我们得到了\(O(\sqrt n)\)效率的素数判定算法。
\(Code:\)
inline bool check(k)
{
for(int i=2;i*i<=k;i++)
if(k%i==0)return 0;
return 1;
}
筛法(Sieve)求素数
现在有一个新的问题模型,如果我们需要求解\(1-n\)的所有素数,那么直接用判定法效率显然太低了。我们需要更高效率的算法,由此我们引入筛法。
埃氏筛法(The sieve of Eratosthenes)
这是筛法思想的基本模型。根据算数基本定理,我们得知:
\]
即任意一个数\(k\)都是由若干素数相乘得到的。
那么我们可以枚举\(2-n\)的每一个数,如果这个数没被标记,则说明这个数是素数,记录这个数,并标记这个数的所有倍数不是素数。
那么这样就可以求解\(1-n\)的所有素数了。时间复杂度为\(O(n\ ln(ln\ n))\)。
实现
这就是OI竞赛中最常用的素数求解算法了,实现也非常简单。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
int cnt=0,n,flag[100080]={},Prime[100080]={};
inline void sieve(void)
{
for(int i=2;i<=n;i++)
{
if(!flag[i])Prime[++cnt]=i;else continue;
for(int j=i*2;j<=n;j+=i)flag[j]=true;
}
}
int main(void)
{
cin>>n;
sieve();
for(int i=1;i<=cnt;i++)cout<<Prime[i]<<" ";
cout<<endl;
}
欧拉筛法(The sieve of Euler)
欧拉筛法就是基于埃氏筛法的优化。
在模拟埃氏筛法的过程中,我们不难发现有很多合数会被它的各个素因子筛好几次,我们可以基于这种情况进行优化:每个合数必有一个最小素因子,用这个因子筛掉合数
所以,我们直接利用之前求出的素数进行筛数,如果发现当前这个数已经是之前某个素数的倍数时,那就说明这个数在以后会由某个更大的数乘以这个小素数筛去,同理,之后的筛数也是没有必要的,这时候就可以跳出循环了。
这样,我们就能保证每一个数只被筛一次,就实现了线性时间复杂度的筛法。
实现
欧拉筛法和埃氏筛法大体相似,但细节有所不同,注意不要搞混。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
int cnt=0,n,flag[100080]={},Prime[100080]={};
inline void seive(void)
{
for(int i=2;i<=n;i++)
{
if(!flag[i])Prime[++cnt]=i;
//注意,这里没了continue,因为在筛某个数时需要用到它的最大因数,而这个数可能是个合数,所以不管是素数还是合数,都要执行以下的筛数过程
for(int j=1;j<=cnt&&i*Prime[j]<=n;j++)
{
flag[i*Prime[j]]=1;
if(i%Prime[j]==0)break;
}
}
}
int main(void)
{
cin>>n;
seive();
for(int i=1;i<=cnt;i++)cout<<Prime[i]<<" ";
cout<<endl;
}
<后记>
『素数 Prime判定和线性欧拉筛法 The sieve of Euler』的更多相关文章
- HDU 3823 Prime Friend(线性欧拉筛+打表)
Besides the ordinary Boy Friend and Girl Friend, here we define a more academic kind of friend: Prim ...
- [洛谷P3383][模板]线性筛素数-欧拉筛法
Description 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) Input&Output Input 第一行包含两个正整数N.M,分别表示查询的 ...
- 欧拉筛法模板&&P3383 【模板】线性筛素数
我们先来看欧拉筛法 •为什么叫欧拉筛呢?这可能是跟欧拉有关 •但是为什么叫线性筛呢?因为它的复杂度是线性的,也就是O(n),我们直接来看代码 #include<cstdio> #inc ...
- 素数判断-----埃氏筛法&欧拉筛法
埃氏筛法 /* |埃式筛法| |快速筛选素数| |15-7-26| */ #include <iostream> #include <cstdio> using namespa ...
- BZOJ 2818 Gcd 线性欧拉
题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...
- POJ2909_Goldbach's Conjecture(线性欧拉筛)
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...
- 2018牛客网暑期ACM多校训练营(第三场) H - Diff-prime Pairs - [欧拉筛法求素数]
题目链接:https://www.nowcoder.com/acm/contest/141/H 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...
- 素数筛总结篇___Eratosthenes筛法和欧拉筛法(*【模板】使用 )
求素数 题目描述 求小于n的所有素数的数量. 输入 多组输入,输入整数n(n<1000000),以0结束. 输出 输出n以内所有素数的个数. 示例输入 10 0 示例输出 4 提示 以这道题目为 ...
- BNU 12846 LCM Extreme 最小公倍数之和(线性欧拉筛选+递推)
LCM Extreme Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. Orig ...
随机推荐
- (二)shell中的变量
1.常用系统变量 $HOME.$PWD.$SHELL.$USER等 2.自定义变量 基本语法: (1)定量变量:变量=值 (2)撤销变量:unset 变量 (3)声明静态变量:readonly变量 注 ...
- 关于Selenium3+python3.6自动化测试中iframe切换
本篇内容主要表述以下几个问题: 1.iframe 这个是什么? 2.定位iframe 标签时遇到的几个报错总结. 3.显示等待与隐示等待的原理与优缺点. 4.无name,ID可变情况下的处理方式 5. ...
- 本地的jar包添加到maven库中 jdbc举例
1.配置(检查)Java环境变量 2.配置(检查)maven环境变量 3.找到maven文件的根目录下的config目录,修改setting.xml文件 配置maven本地仓库 <!-- loc ...
- centos7部署openstack-ocata
1.前言 本文旨在记录本人的一个实验过程,因为其中有一些坑,方便以后回顾查询. 其中限于篇幅(大部分是配置部分)有些内容省略掉了,官网都有,各位如果是安装部署的话可以参考官网,不建议使用本文. 以下是 ...
- 错误解决记录------------rhel安装Mysql软件包依赖 mariadb组件
错误解决记录------------软件包依赖 mariadb组件 错误信息: 错误:软件包:akonadi-mysql-1.9.2-4.el7.x86_64 (@anaconda) 需要:maria ...
- Pandas 0 数据结构Series
# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq < ...
- BZOJ2567 : 篱笆
设第$i$个区间的左端点为$a[i]$,区间长度为$len$,要覆盖的部分的长度为$all$,因为区间左端点递增,所以最优方案中它们的位置仍然递增. 对于链的情况,要满足三个条件: 1. 区间$i$可 ...
- Layui下拉框改变时触发事件
layui.use(['form', 'layer'], function () { var form = layui.form(); var layer = layui.layer; form.on ...
- vue 源码学习(一) 目录结构和构建过程简介
Flow vue框架使用了Flow作为类型检查,来保证项目的可读性和维护性.vue.js的主目录下有Flow的配置.flowconfig文件,还有flow目录,指定了各种自定义类型. 在学习源码前可以 ...
- 201771010118 马昕璐 《面向对象设计 java》第十七周实验总结
1.实验目的与要求 (1) 掌握线程同步的概念及实现技术: (2) 线程综合编程练习 2.实验内容和步骤 实验1:测试程序并进行代码注释. 测试程序1: l 在Elipse环境下调试教材651页程序1 ...