话不多说,上代码

1 def hanoi_move(n, source, dest, intermediate):
2 if n >= 1: # 递归出口,只剩一个盘子
3 hanoi_move(n-1, source, intermediate, dest)
4 print("Move %s -> %s" % (source, dest))
5 hanoi_move(n-1, intermediate, dest, source)

首先我们这里有三根杆子依次排放,分别是 源杆、媒介杆、目标杆 对应 代码的 source、dest、intermediate,源杆上有n块大饼

我们定义一个函数 def hanoi(n,源杆,目标杆,媒介杆):# 意思是源杆 借助 媒介杆 到 目标杆

  我们假设除了底下最后一层上面的n-1层都已经摆放好了,即源杆上目前只有两块大饼,我们要执行的操作是:

  源杆上的n-1层 借助 目标杆 到 媒介杆 等同于 hanoi(n-1,源杆,媒介杆,目标杆)相当于n-1层在媒介杆上了

  打印 源杆 到 目标杆 显示路径

  再把媒介杆的n-1层 借助 源杆 到 目标杆 等同于 hanoi(n-1,媒介杆,目标杆,源杆)

再来说说为什么假设n-1层的,因为我们在假设n-1层的时候使用了递归,在hanoi(n-1…)的时候我们就是假设n-2层已经摆放好了,然后就是在hanoi(n-2…)的时候我们假设n-3层已经摆放好了,不断回溯,就到了最上面一层已经摆放好了,这个假设是合理的,既可以使用该方法。使用了递归的回溯思想,如果使用递归思想不断地推出他的步骤那基本是不可能的,然而通过前提不断地假设反而更容易拿到结果。

汉诺塔问题其实很简单 Python 递归经典面试题的更多相关文章

  1. 汉诺塔问题深度剖析(python实现)

    当我们学习一门编程语言的时候,都会遇到递归函数这个问题.而学习递归的一个经典案例就是汉诺塔问题.通过这篇文章,观察移动三个盘子和四个盘子的详细过程,您不仅可以深刻的了解递归,也更加熟悉了汉诺塔的游戏的 ...

  2. T2485 汉诺塔升级版(普及)(递归)

    https://www.luogu.org/problem/show?pid=T2485 题目背景 汉诺塔升级了 题目描述 现在我们有N个圆盘和N个柱子,每个圆盘大小都不一样,大的圆盘不能放在小的圆盘 ...

  3. 四柱加强版汉诺塔HanoiTower----是甜蜜还是烦恼

    我想很多人第一次学习递归的时候,老师或者书本上可能会举汉诺塔的例子. 但是今天,我们讨论的重点不是简单的汉诺塔算法,而是三柱汉诺塔的延伸.先来看看经典的三柱汉诺塔. 一.三柱汉诺塔(Hanoi_Thr ...

  4. 递归--练习2--noi6261汉诺塔

    递归--练习2--noi6261汉诺塔 一.心得 先把递推公式写出来,会很简单的 二.题目 6261:汉诺塔问题 总时间限制:  1000ms 内存限制:  65536kB 描述 约19世纪末,在欧州 ...

  5. 【ACwing 96】奇怪的汉诺塔——区间dp

    (题面来自ACwing) 汉诺塔问题,条件如下: 1.这里有A.B.C和D四座塔. 2.这里有n个圆盘,n的数量是恒定的. 3.每个圆盘的尺寸都不相同. 4.所有的圆盘在开始时都堆叠在塔A上,且圆盘尺 ...

  6. 【C语言】汉诺塔问题

    之前遇见这个问题,非常费劲地理解了,并写出代码,然后过段时间,再遇见这个问题,又卡住了,如此反反复复两三次,才发现自己对递归的理解依然很肤浅.今天无聊,重温<算法:c语言实现>一书,又遇见 ...

  7. 汉诺塔算法的递归与非递归的C以及C++源代码

    汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...

  8. 汉诺塔III 汉诺塔IV 汉诺塔V (规律)

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  9. 汉诺塔问题(C++版)

    题目描述 Description 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到中间的杆 ...

随机推荐

  1. SQL反模式学习笔记2 乱穿马路

    程序员通常使用逗号分隔的列表来避免在多对多的关系中创建交叉表, 将这种设计方式定义为一种反模式,称为“乱穿马路”. 目标:  存储多属性值,即多对一 反模式:将多个值以格式化的逗号分隔存储在一个字段中 ...

  2. arcgis js 鼠标点和绘制的点位有偏移

    问题描述:鼠标点和绘制的点位有偏移 问题原因:地图DIV中包含了一个面板DIV,停靠在了地图页面的左边,隐藏掉就是正确了 解决方法:重写DIV样式,让左边DIV与地图DIV平级排列.

  3. 三大家族(offset、scroll、client)

    offset.scroll.client三大家族 offset家族 offsetWidth 与 offsetHeight offset 偏移 用于获取元素自身的位置和大小 offsetWidth和of ...

  4. 南京邮电大学//bugkuCTF部分writeup

    WEB 1.签到题 nctf{flag_admiaanaaaaaaaaaaa} 右键查看源代码或按f12即可. 2.这题不是web nctf{photo_can_also_hid3_msg} 下载图片 ...

  5. Android Studio升级到3.4遇到的问题总结

    1.gradle需要升级. 1).project的build.gradle文件写下如下代码: buildscript { repositories { google() jcenter() } dep ...

  6. 2018-2019-2 20165220 《网络对抗技术》Exp1 PC平台逆向破解

    实验目的 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShe ...

  7. Java下载文件的几种方式

    转发自博客园Sunny的文章 1.以流的方式下载 public HttpServletResponse download(String path, HttpServletResponse respon ...

  8. tensorflow 使用 5 mnist 数据集, softmax 函数

    用于分类  softmax 函数 手写数据识别:

  9. SQL Server查询重复数据

    1.查询单列重复: select * from test where name in (select name from test group by name having count (name) ...

  10. vue 源码学习三 vue中如何生成虚拟DOM

    vm._render 生成虚拟dom 我们知道在挂载过程中, $mount 会调用 vm._update和vm._render 方法,vm._updata是负责把VNode渲染成真正的DOM,vm._ ...