本文源自于Kevin Markham 的模型评估:https://github.com/justmarkham/scikit-learn-videos/blob/master/05_model_evaluation.ipynb

应办事项:
  1. 我的监督学习应该使用哪一个模型
  2. 我的模型中应该选择那些调整参数
  3. 如何估计模型在样本数据外的表现
评论:
  1. 分类任务:预测未知鸢尾花的种类
  2. 用三个分类模型:KNN(K=1),KNN(K=5),逻辑回归
  3. 需要一个选择模型的方法:模型评估

1. 训练测试整个数据集


在整个数集上进行训练,然后用同一个数集进行测试,评估准确度。
  1 from sklearn.datasets import load_iris
2 from sklearn.linear_model import LogisticRegression
3
4 # 1.read in the iris data
5 iris=load_iris()
6 X=iris.data
7 Y=iris.target
8 # print(X)
9 # print(Y)
10
11 # 2.logistic regression
12 logreg=LogisticRegression()
13 logreg.fit(X,Y)
14 y_pred=logreg.predict(X)
15 print(len(y_pred))
输出结果:
 
会发现有两个warning,但不影响结果,强迫症表示消灭红字。
分析和查阅logisticregression
将 logreg=LogisticRegression() 改为 logreg=LogisticRegression(solver='liblinear',multi_class='ovr') 即可。
 
三者初步比较:
 from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier # 1.read in the iris data
iris=load_iris()
X=iris.data
Y=iris.target
# print(X)
# print(Y) # 2.logistic regression
logreg=LogisticRegression(solver='liblinear',multi_class='ovr')
logreg.fit(X,Y)
y_logreg_pred=logreg.predict(X)
print(len(y_logreg_pred))
print(metrics.accuracy_score(Y,y_logreg_pred)) # 3.KNN=5
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(X,Y)
y_knn5_pred=knn.predict(X)
print(len(y_knn5_pred))
print(metrics.accuracy_score(Y,y_knn5_pred)) # 4.KNN=1
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X,Y)
y_knn1_pred=knn.predict(X)
print(len(y_knn1_pred))
print(metrics.accuracy_score(Y,y_knn1_pred))
输出结果:
问题:
  1. 目标是评测模型样本以外的数据表现
  2. 但是,最大化培训精度奖励过于复杂的模型,模型不能泛化
  3. 不必要的复杂模型过度拟合

2. 分开训练和测试集


将数据集一分为二,一部分用于训练,另一部分用于测试。

 from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split # 1.read in the iris data
iris=load_iris()
X=iris.data
Y=iris.target # 2.split X,Y
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.4,random_state=4)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape) # 3.logistic regression
logreg=LogisticRegression(solver='liblinear',multi_class='ovr')
logreg.fit(x_train,y_train)
y_logreg_pred=logreg.predict(x_test)
print(metrics.accuracy_score(y_test,y_logreg_pred)) # 3.KNN=5
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train,y_train)
y_knn5_pred=knn.predict(x_test)
print(metrics.accuracy_score(y_test,y_knn5_pred)) # 4.KNN=1
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(x_train,y_train)
y_knn1_pred=knn.predict(x_test)
print(metrics.accuracy_score(y_test,y_knn1_pred))
输出结果:
 
观察不同的KNN中的k值对准确度会有什么影响。
 
 import matplotlib.pyplot as plt
# print(k_range)
scores=[]
for k in k_range:
knn=KNeighborsClassifier(n_neighbors=k)
knn.fit(x_train,y_train)
y_knnk_pred=knn.predict(x_test)
scores.append(metrics.accuracy_score(y_test,y_knnk_pred))
plt.plot(k_range,scores)
plt.xlabel('value of k for KNN')
plt.ylabel('testing accurancy')
plt.show()

输出结果:

从上可以观察出k的取值对准确度的影响,k太小或太大都不是最佳值。

3. 预测


取k=11(7~16)。

 # 6.predict
knn=KNeighborsClassifier(n_neighbors=11)
knn.fit(x_train,y_train)
y_pred=knn.predict([[3,5,4,2]])
print(y_pred)

输出结果:

 
 

scikit-learn中机器学习模型比较(逻辑回归与KNN)的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  3. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  4. 【机器学习基础】逻辑回归——LogisticRegression

    LR算法作为一种比较经典的分类算法,在实际应用和面试中经常受到青睐,虽然在理论方面不是特别复杂,但LR所牵涉的知识点还是比较多的,同时与概率生成模型.神经网络都有着一定的联系,本节就针对这一算法及其所 ...

  5. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  6. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Spark机器学习(2):逻辑回归算法

    逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...

  8. 使用SKlearn(Sci-Kit Learn)进行SVR模型学习

    今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...

  9. 【Todo】用python进行机器学习数据模拟及逻辑回归实验

    参考了这个网页:http://blog.csdn.net/han_xiaoyang/article/details/49123419 数据用了 https://pan.baidu.com/s/1pKx ...

随机推荐

  1. HDU 4547 CD操作

    传送门 没啥好说的.就是一个LCA. 不过就是有从根到子树里任意一个节点只需要一次操作,特判一下LCA是不是等于v.相等的话不用走.否则就是1次操作. 主要是想写一下倍增的板子. 倍增基于二进制.暴力 ...

  2. Q_UNUSED 的使用

    在构建比较大型的工程的时候,若继承,重构虚函数,写数据model等等比较多的时候,会给出大量的  “未引用的形参” ,“warning: unused parameter ” 的告警.这种告警多了会影 ...

  3. MYSQL配置主从同步

    MYSQL配置主从同步 mysql主服务器配置 vim /etc/my.cnf [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql. ...

  4. vue+weui+FormData+XMLHttpRequest 实现图片上传功能

    首先是样式:https://weui.io/#uploader 在weui示例中可以看到是用以下方法进行选择图片 <input id="uploaderInput" clas ...

  5. application对象的应用案例

    application对象由多个客户端用户共享,它的应用范围是所有的客户,服务器启动后,新建一个application对象,该对象一旦建立,就一直保持到服务器关闭.当有客户访问服务器上的一个JSP页面 ...

  6. java-关于java_home配置,classpath配置和javac,java命令,javac编译器,和java虚拟机之间的关系

    在每个人学习java的第一步,都是安装jdk ,jre,配置java_home,classpath,path. 为什么要做这些?在阅读java-core的时候,看到了原理,p141. 一 关于类的共享 ...

  7. 课下作业MyCP的分析

    目录 MyCP 题目 截图 代码 相关知识 出现的问题 代码托管 参考资料 MyCP 题目 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能,要求MyCP支持两个参数: ja ...

  8. C# activex开发中 axwebbrowser控件及 IE浏览器设置

    <object type='application/x-vlc-plugin' id='vlc' events='True' codebase='../cab/axvlc.cab' classi ...

  9. Kubernetes之canal的网络策略(NetworkPolicy)

    安装要求: 1.我们这里安装的是3.3的版本.kubernetes的要求: 支持的版本 1.10 1.11 1.12 2.CNI插件需要启用,Calico安装为CNI插件.必须通过传递--networ ...

  10. 《Java》第五周学习总结20175301

    https://gitee.com/ShengHuoZaiDaXue/20175301.git 本周我学习了第六章的内容接口 重要内容有 理解接口 接口参数 面向接口编程 abstract类与接口的比 ...