scikit-learn中机器学习模型比较(逻辑回归与KNN)
本文源自于Kevin Markham 的模型评估:https://github.com/justmarkham/scikit-learn-videos/blob/master/05_model_evaluation.ipynb
- 我的监督学习应该使用哪一个模型
- 我的模型中应该选择那些调整参数
- 如何估计模型在样本数据外的表现
- 分类任务:预测未知鸢尾花的种类
- 用三个分类模型:KNN(K=1),KNN(K=5),逻辑回归
- 需要一个选择模型的方法:模型评估
1. 训练测试整个数据集
在整个数集上进行训练,然后用同一个数集进行测试,评估准确度。
1 from sklearn.datasets import load_iris
2 from sklearn.linear_model import LogisticRegression
3
4 # 1.read in the iris data
5 iris=load_iris()
6 X=iris.data
7 Y=iris.target
8 # print(X)
9 # print(Y)
10
11 # 2.logistic regression
12 logreg=LogisticRegression()
13 logreg.fit(X,Y)
14 y_pred=logreg.predict(X)
15 print(len(y_pred))


from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier # 1.read in the iris data
iris=load_iris()
X=iris.data
Y=iris.target
# print(X)
# print(Y) # 2.logistic regression
logreg=LogisticRegression(solver='liblinear',multi_class='ovr')
logreg.fit(X,Y)
y_logreg_pred=logreg.predict(X)
print(len(y_logreg_pred))
print(metrics.accuracy_score(Y,y_logreg_pred)) # 3.KNN=5
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(X,Y)
y_knn5_pred=knn.predict(X)
print(len(y_knn5_pred))
print(metrics.accuracy_score(Y,y_knn5_pred)) # 4.KNN=1
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X,Y)
y_knn1_pred=knn.predict(X)
print(len(y_knn1_pred))
print(metrics.accuracy_score(Y,y_knn1_pred))

问题:- 目标是评测模型样本以外的数据表现
- 但是,最大化培训精度奖励过于复杂的模型,模型不能泛化
- 不必要的复杂模型过度拟合
2. 分开训练和测试集
将数据集一分为二,一部分用于训练,另一部分用于测试。
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split # 1.read in the iris data
iris=load_iris()
X=iris.data
Y=iris.target # 2.split X,Y
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.4,random_state=4)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape) # 3.logistic regression
logreg=LogisticRegression(solver='liblinear',multi_class='ovr')
logreg.fit(x_train,y_train)
y_logreg_pred=logreg.predict(x_test)
print(metrics.accuracy_score(y_test,y_logreg_pred)) # 3.KNN=5
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train,y_train)
y_knn5_pred=knn.predict(x_test)
print(metrics.accuracy_score(y_test,y_knn5_pred)) # 4.KNN=1
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(x_train,y_train)
y_knn1_pred=knn.predict(x_test)
print(metrics.accuracy_score(y_test,y_knn1_pred))

import matplotlib.pyplot as plt
# print(k_range)
scores=[]
for k in k_range:
knn=KNeighborsClassifier(n_neighbors=k)
knn.fit(x_train,y_train)
y_knnk_pred=knn.predict(x_test)
scores.append(metrics.accuracy_score(y_test,y_knnk_pred))
plt.plot(k_range,scores)
plt.xlabel('value of k for KNN')
plt.ylabel('testing accurancy')
plt.show()
输出结果:

从上可以观察出k的取值对准确度的影响,k太小或太大都不是最佳值。
3. 预测
取k=11(7~16)。
# 6.predict
knn=KNeighborsClassifier(n_neighbors=11)
knn.fit(x_train,y_train)
y_pred=knn.predict([[3,5,4,2]])
print(y_pred)
输出结果:



4. 附注:
KNN算法:https://www.jianshu.com/p/48d391dab189
scikit-learn中机器学习模型比较(逻辑回归与KNN)的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- 【机器学习基础】逻辑回归——LogisticRegression
LR算法作为一种比较经典的分类算法,在实际应用和面试中经常受到青睐,虽然在理论方面不是特别复杂,但LR所牵涉的知识点还是比较多的,同时与概率生成模型.神经网络都有着一定的联系,本节就针对这一算法及其所 ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Spark机器学习(2):逻辑回归算法
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...
- 使用SKlearn(Sci-Kit Learn)进行SVR模型学习
今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...
- 【Todo】用python进行机器学习数据模拟及逻辑回归实验
参考了这个网页:http://blog.csdn.net/han_xiaoyang/article/details/49123419 数据用了 https://pan.baidu.com/s/1pKx ...
随机推荐
- Python——模块——配置模块(ConfigParser)
一.读取 read(filename) 直接读取ini文件内容 sections() 得到所有的section,并以列表的形式返回 options(section) 得到该section的所有opt ...
- drf相关问题
drf自定义用户认证: 登录默认 使用django的ModelBackend,对用户名和密码进行验证.但我们平时登录网站时除了用户名也可以用邮箱或手机进行登录,这就需要我们自己扩展backend 一. ...
- Flask 构建微电影视频网站(八)
评论收藏及弹幕 实现电影评论添加及列表.数据查询实现统计播放量和评论量.jquery ajax实现收藏电影,flask结合redis消息队列实现电影弹幕,bug处理等功能. 电影评论-统计 class ...
- 【XSY3320】string AC自动机 哈希 点分治
题目大意 给一棵树,每条边上有一个字符,求有多少对 \((x,y)(x<y)\),满足 \(x\) 到 \(y\) 路径上的边上的字符按顺序组成的字符串为回文串. \(1\leq n\leq 5 ...
- Windows 上连接本地 Linux虚拟机上的 mysql 数据库
查看本机ip ifconfig 查看当前的 3306 端口状态 netstat -an|grep 3306 当前是外部无法连接状态 修改访问权限 默认的 mysql 是只能本机连接, 因此需要修改配 ...
- vmware创建虚拟机不识别网卡
今天在给虚拟机添加网卡的时候,出现了虚拟机不识别新加的网卡,很纳闷,连的一样的端口组,为什么新加的网卡识别不了呢 然后查看pci设备,发现网卡的驱动为 AMD 79C970 PCnet32- LANC ...
- 解析.DBC文件, 读懂CAN通信矩阵,实现车内信号仿真
通常我们拿到某个ECU的通信矩阵数据库文件,.dbc后缀名的文件. 直接使用CANdb++ Editor打开,可以很直观的读懂信号矩阵的信息,例如下图: 现在要把上图呈现的信号从.dbc文件中解析出来 ...
- CF1157A-Reachable Numbers题解
原题地址 题目大意:有一个函数\(f(x)\),效果是将\(x+1\)后,去掉末尾所有的\(0\),例如: \(f(599)=6\),因为\(599+1=600→60→6\) \(f(7)=8\),因 ...
- 【学习笔记】python
1. len( s ) 返回对象(字符.列表.元祖等)的长度或项目个数. >>>str = "runoob" >>> len(str) # ...
- vue+elementUI+axios实现的全局loading加载动画
在项目中,很多时候都需要loading加载动画来缓解用户的焦虑等待,比如说,我打开了一个页面,而这个页面有很多接口请求,但浏览器的请求并发数就那么几个,再加上如果网速不行的话,那么这时候,用户很可能就 ...