scikit-learn中机器学习模型比较(逻辑回归与KNN)
本文源自于Kevin Markham 的模型评估:https://github.com/justmarkham/scikit-learn-videos/blob/master/05_model_evaluation.ipynb
- 我的监督学习应该使用哪一个模型
- 我的模型中应该选择那些调整参数
- 如何估计模型在样本数据外的表现
- 分类任务:预测未知鸢尾花的种类
- 用三个分类模型:KNN(K=1),KNN(K=5),逻辑回归
- 需要一个选择模型的方法:模型评估
1. 训练测试整个数据集
在整个数集上进行训练,然后用同一个数集进行测试,评估准确度。
1 from sklearn.datasets import load_iris
2 from sklearn.linear_model import LogisticRegression
3
4 # 1.read in the iris data
5 iris=load_iris()
6 X=iris.data
7 Y=iris.target
8 # print(X)
9 # print(Y)
10
11 # 2.logistic regression
12 logreg=LogisticRegression()
13 logreg.fit(X,Y)
14 y_pred=logreg.predict(X)
15 print(len(y_pred))


from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier # 1.read in the iris data
iris=load_iris()
X=iris.data
Y=iris.target
# print(X)
# print(Y) # 2.logistic regression
logreg=LogisticRegression(solver='liblinear',multi_class='ovr')
logreg.fit(X,Y)
y_logreg_pred=logreg.predict(X)
print(len(y_logreg_pred))
print(metrics.accuracy_score(Y,y_logreg_pred)) # 3.KNN=5
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(X,Y)
y_knn5_pred=knn.predict(X)
print(len(y_knn5_pred))
print(metrics.accuracy_score(Y,y_knn5_pred)) # 4.KNN=1
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X,Y)
y_knn1_pred=knn.predict(X)
print(len(y_knn1_pred))
print(metrics.accuracy_score(Y,y_knn1_pred))

问题:- 目标是评测模型样本以外的数据表现
- 但是,最大化培训精度奖励过于复杂的模型,模型不能泛化
- 不必要的复杂模型过度拟合
2. 分开训练和测试集
将数据集一分为二,一部分用于训练,另一部分用于测试。
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split # 1.read in the iris data
iris=load_iris()
X=iris.data
Y=iris.target # 2.split X,Y
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.4,random_state=4)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape) # 3.logistic regression
logreg=LogisticRegression(solver='liblinear',multi_class='ovr')
logreg.fit(x_train,y_train)
y_logreg_pred=logreg.predict(x_test)
print(metrics.accuracy_score(y_test,y_logreg_pred)) # 3.KNN=5
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train,y_train)
y_knn5_pred=knn.predict(x_test)
print(metrics.accuracy_score(y_test,y_knn5_pred)) # 4.KNN=1
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(x_train,y_train)
y_knn1_pred=knn.predict(x_test)
print(metrics.accuracy_score(y_test,y_knn1_pred))

import matplotlib.pyplot as plt
# print(k_range)
scores=[]
for k in k_range:
knn=KNeighborsClassifier(n_neighbors=k)
knn.fit(x_train,y_train)
y_knnk_pred=knn.predict(x_test)
scores.append(metrics.accuracy_score(y_test,y_knnk_pred))
plt.plot(k_range,scores)
plt.xlabel('value of k for KNN')
plt.ylabel('testing accurancy')
plt.show()
输出结果:

从上可以观察出k的取值对准确度的影响,k太小或太大都不是最佳值。
3. 预测
取k=11(7~16)。
# 6.predict
knn=KNeighborsClassifier(n_neighbors=11)
knn.fit(x_train,y_train)
y_pred=knn.predict([[3,5,4,2]])
print(y_pred)
输出结果:



4. 附注:
KNN算法:https://www.jianshu.com/p/48d391dab189
scikit-learn中机器学习模型比较(逻辑回归与KNN)的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- 【机器学习基础】逻辑回归——LogisticRegression
LR算法作为一种比较经典的分类算法,在实际应用和面试中经常受到青睐,虽然在理论方面不是特别复杂,但LR所牵涉的知识点还是比较多的,同时与概率生成模型.神经网络都有着一定的联系,本节就针对这一算法及其所 ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Spark机器学习(2):逻辑回归算法
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...
- 使用SKlearn(Sci-Kit Learn)进行SVR模型学习
今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...
- 【Todo】用python进行机器学习数据模拟及逻辑回归实验
参考了这个网页:http://blog.csdn.net/han_xiaoyang/article/details/49123419 数据用了 https://pan.baidu.com/s/1pKx ...
随机推荐
- servlet(6) 链接数据库
一.servlet链接mysql步骤: 1.注册驱动器:Class.forName("com.mysql.jdbc.Driver"); 加载类并执行下面的静态语句块,将Driver ...
- koa-static node服务器设置静态目录
最近毕设需要用到上传照片,但当node服务器成功获取前端传来的图片时,又不知道如何在页面获取服务器image目录下的图片,一直报以下错误: 问题主要是无法找到图片url,虽然可以一个个在app.js文 ...
- 前端动态菜单-bootstrap-treeview
一.bootstrap-treeview 官网 Demo bootstrap-treeview是一款效果非常酷的基于bootstrap的jQuery多级列表树插件.该jQuery插件基于Twitter ...
- Mysql 密码过期
1. Cd D:\xampps\mysql\bin 输入命令:mysql -u root -p,回车即可进入mysql命令行界面. mysql->show database; mysql-& ...
- youtube上一些随手就来的牛逼颜色
网页背景色: 白色背景 #f6f5f7:替代了原来的纯白,不那么刺眼,很和谐 黑色背景 #262626:一种很好看的黑色背景 其他颜色: 圆形边框线:#ddd;
- CentOS7防火墙问题
CentOS6关闭防火墙使用以下命令, //临时关闭service iptables stop//禁止开机启动chkconfig iptables off CentOS7中若使用同样的命令会报错, s ...
- [十二省联考2019]异或粽子(堆+可持久化Trie)
前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\( ...
- 一加3T 误清除data 恢复数据
数据丢失经过:日常用机无备份直接操作:装google框架后,rootexplorer文件浏览器删除多余google应用导致无法开机:开机不成功应该重刷入google gapps包,并没有这样操作而是进 ...
- DB(1):SQLAPI catch [Bind variable/parameter 'pay_acc_id' not found] !!!
SQLAPI catch [Bind variable/parameter 'pay_acc_id' not found] !!! 出现这种报错,先检查命令类后面的参数是否混淆(SACommand s ...
- js重点--this关键字
推荐博客:https://www.cnblogs.com/huaxili/p/5407559.html this是JavaScript的一个关键字,表示的不是对象本身,而是指被调用的上文. 主要用于以 ...