P4233 射命丸文的笔记
思路
题目要求求的是哈密顿回路的期望数量,实际上就是哈密顿回路的总数/有哈密顿回路的竞赛图的数量
n个点的所有竞赛图中哈密顿回路的总数为
\]
每个哈密顿回路可以看成一个环,则经过的n个节点就是长度为n的一个排列,排列总数为\(n!\) 个,每个回路被计数了n次,有\((n-1)!\)种,剩下的\(\frac{n(n-1)}{2}-n\)条边随便连,有\(2^{\frac{(n-1)n}{2}-n}\)种
而强连通竞赛图中必有一个哈密顿回路
而i个点的竞赛图总数为
\]
设i个点的竞赛图总数为\(g_i=2^{\frac{i(i-1)}{2}}\),i个点强连通竞赛图总数为\(f_i\)
可以枚举拓扑序最小的强连通分量大小,然后用总数减去不强连通的竞赛图总数即可
为什么枚举拓扑序最小?因为枚举拓扑序最小同时确定了每条边的方向并保证了整个图不会强连通
\]
所以
\]
拆开组合数
\]
所以
\]
设\(F_i=\frac{f_i}{i!}\),\(G_i=\frac{g_i}{i!}\)
就变成了这样
\]
然后上分治FFT或者多项式求逆就好了
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MAXN = 300000;
const int MOD = 998244353;
const int G = 3;
const int invG = 332748118;
int rev[MAXN];
void cal_rev(int n,int lim){
for(int i=0;i<n;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(lim-1));
}
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void NTT(int *a,int opt,int n,int lim){
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int i=2;i<=n;i<<=1){
int len=i/2,tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<j+len;k++){
int t=(1LL*a[k+len]*arr)%MOD;
a[k+len]=(a[k]-t+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
arr=(1LL*arr*tmp)%MOD;
}
}
}
if(!opt){
int invN = pow(n,MOD-2);
for(int i=0;i<n;i++)
a[i]=(1LL*a[i]*invN)%MOD;
}
}
void Inv(int *a,int *b,int dep,int &midlen,int &midlim){
if(dep==1){
b[0]=pow(a[0],MOD-2);
return;
}
Inv(a,b,(dep+1)>>1,midlen,midlim);
static int tmp[MAXN];
while((dep<<1)>midlen)
midlen<<=1,midlim++;
for(int i=0;i<dep;i++)
tmp[i]=a[i];
for(int i=dep;i<midlen;i++)
tmp[i]=0;
cal_rev(midlen,midlim);
NTT(b,1,midlen,midlim);
NTT(tmp,1,midlen,midlim);
for(int i=0;i<midlen;i++)
b[i]=1LL*b[i]*(2LL-1LL*b[i]*tmp[i]%MOD+MOD)%MOD;
NTT(b,0,midlen,midlim);
for(int i=dep;i<midlen;i++)
b[i]=0;
}
int jc[MAXN],jc_inv[MAXN],n;
void init(int n){
jc[0]=1;
for(int i=1;i<=n;i++)
jc[i]=(1LL*jc[i-1]*i)%MOD;
jc_inv[n]=pow(jc[n],MOD-2);
for(int i=n-1;i>=0;i--)
jc_inv[i]=(1LL*jc_inv[i+1]*(i+1))%MOD;
}
int f[MAXN],g[MAXN];
signed main(){
scanf("%lld",&n);
init(n);
int inv2=pow(2,MOD-2);
for(int i=1;i<=n;i++)
g[i]=(1LL*pow(2,(1LL*i*(i-1)/2)%(MOD-1))*jc_inv[i]%MOD);
g[0]=1;
int midlen=1,midlim=0;
Inv(g,f,n+1,midlen,midlim);
for(int i=1;i<=n;i++){
if(i==1)
printf("1\n");
else if(i==2)
printf("-1\n");
else
printf("%lld\n",MOD-1LL*jc[i-1]*pow(2,i*(i-3)/2%(MOD-1))%MOD*pow(1LL*f[i]*jc[i]%MOD,MOD-2)%MOD);
}
return 0;
}
P4233 射命丸文的笔记的更多相关文章
- 洛谷P4233 射命丸文的笔记 【多项式求逆】
题目链接 洛谷P4233 题解 我们只需求出总的哈密顿回路个数和总的强联通竞赛图个数 对于每条哈密顿回路,我们统计其贡献 一条哈密顿回路就是一个圆排列,有\(\frac{n!}{n}\)种,剩余边随便 ...
- LuoguP4233 射命丸文的笔记
题目描述 求所有\(n\)个点带标号强连通竞赛图中哈密顿回路数量的平均值. 题解 因为要求平均数,所以我们可以把分母和分子单开来算. \(n\)个点的所有竞赛图的所有哈密顿回路个数是可以求出来的,就是 ...
- [Luogu4233]射命丸文的笔记
luogu description 对于\(x\in[1,n]\)求\(x\)点强联通竞赛图中的哈密顿回路的期望个数膜\(998244353\). \(n\le10^5\) sol 首先\(n\)点竞 ...
- Luogu4233 射命丸文的笔记 DP、多项式求逆
传送门 注意到总共有\(\frac{n!}{n}\)条本质不同的哈密顿回路,每一条哈密顿回路恰好会出现在\(2^{\binom{n}{2} - n}\)个图中,所以我们实际上要算的是强连通有向竞赛图的 ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- 省选前的th题
沙茶博主终于整完了知识点并学完了早该在NOIP之前学的知识们 于是终于开始见题了,之前那个奇怪的题单的结果就是这个了 题目按沙茶博主的做题顺序排序 个人感觉(暂时)意义不大的已被自动忽略 洛谷 491 ...
- git-简单流程(学习笔记)
这是阅读廖雪峰的官方网站的笔记,用于自己以后回看 1.进入项目文件夹 初始化一个Git仓库,使用git init命令. 添加文件到Git仓库,分两步: 第一步,使用命令git add <file ...
- js学习笔记:webpack基础入门(一)
之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...
- SQL Server技术内幕笔记合集
SQL Server技术内幕笔记合集 发这一篇文章主要是方便大家找到我的笔记入口,方便大家o(∩_∩)o Microsoft SQL Server 6.5 技术内幕 笔记http://www.cnbl ...
随机推荐
- 《Mysql 锁》
一:什么是锁? - 锁是计算机协调多个进程或纯线程并发访问某一资源的机制. - 通俗的来说,锁是一种对资源的保护形式. 二:锁分类 - 表级锁 - 开销小,加锁快,没有死锁,锁定粒度大,发生锁冲突的概 ...
- ACC(Attribute Component Capability) 即特质,组件,能力
这是一种测试计划的替代方法. ACC的指导原则如下: 1. 避免散漫的文字,推荐使用简明的列表.并不是所有的测试人员都想当小说家,也不具备将一个产品的目标或测试需求表达成散文的技能. 2.不必推销.测 ...
- 普通Java Web项目为什么lib包要放在WEB-INF下
首先一个项目要编译好之后才能部署到Tomcat中运行. Tomcat运行时如何找编译好的.class文件呢,其实Tomcat下的web项目有两个预置的classpath(就是能找到.class文件的入 ...
- Python3学习之路~9.1 paramiko模块:实现ssh执行命令以及传输文件
我们一般使用linux的时候,都是在Windows上安装一个ssh客户端连接上去.那么从一台linux如何连接到另一条linux呢?使用ssh命令即可,因为每台linux机器自己都有一个ssh客户端. ...
- 关于Android中使用BottomNavigationView切换横屏导致返回主页的问题
问题: 如图,"发现"页即为主页,然后我们切换到"我"页,一切正常. 那么问题来了,如果切换到"我"页后把手机横屏,则会出现下面的情况. 嗯 ...
- Android Studio旧版(内含SDK)安装和环境变量配置 转自I-T枭
win10下Android Studio和SDK下载.安装和环境变量配置 ------made by siwuxie095 转自I-T枭https://me.csdn.net/hahahhahahah ...
- 在CentOS上安装Python3的三种方法
Centos7默认自带了Python2.7版本,但是因为项目需要使用Python3.x你可以按照此文的三个方法进行安装. 注:本文示例安装版本为Python3.5, 一.Python源代码编译安装 安 ...
- css遮罩蒙版效果 分栏效果
mask遮罩蒙版效果 来看一下效果图: 这是两张原图: 遮罩层图像 注意,白色区域为透明状态 要展示的图像 使用mask之后产生的效果图 首先来解释一下遮罩.蒙版.和PS中的蒙版.Flash中 ...
- docker运行jar文件
一.环境 本地虚拟机安装的centos7 二.安装docker yum install docker-engine 三.开启阿里云加速 docker的镜像仓库在国外,下载会很慢,启用阿里云加速. 在/ ...
- caffe中train过程的train数据集、val数据集、test时候的test数据集区别
val是validation的简称.training dataset 和 validation dataset都是在训练的时候起作用.而因为validation的数据集和training没有交集,所以 ...