【XSY2666】排列问题 DP 容斥原理 分治FFT
题目大意
有\(n\)种颜色的球,第\(i\)种有\(a_i\)个。设\(m=\sum a_i\)。你要把这\(m\)个小球排成一排。有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相邻的小球同色的对数为\(x\)。
\(n\leq 10000,m\leq 200000\)
题解
我们考虑把这些小球分段,每段内所有小球颜色相同,但相邻两段的小球颜色可以相同。
设第\(i\)种颜色有\(b_i\)段,那么分\(j\)段的方案数是\(\frac{(\sum b_i)!}{\sum(bi!)}=\frac{j!}{\sum(bi!)}\)
那么先DP,设\(f_{i,j}\)为前\(i\)种颜色,分了\(j\)段的方案数\(\div b_i!\)。显然枚举第\(i\)中颜色分\(k\)段得
\]
那个组合数是插板法得到的。
这个DP的时间复杂度是\(O(m^2)\)(因为枚举第\(i\)种颜色时\(k=1\ldots a_i,j=1\ldots s_i\)(\(s\)为\(a\)的前缀和))
然后这个东西可以分治FFT优化到\(O(m\log m\log n)\)
这样我们得到了分成\(i\)段的方案数\(g_i=f_{n,i}\times i!\),但相邻两段可能颜色相同。我们还要减掉这种情况。
就是对于一种实际上分成 \(j\) 段的方案,它在分成 \(i\) 段的方案数中会被计算 \(\binom{m-j}{m-i}\) 次(就是在 \(m-j\) 个间隔中取 \(m-i\) 个)。
答案 \(ans_i=g_i-\sum_{j<i}ans_j\binom{m-j}{i-j}\)
可以简单暴力的通过分治FFT优化到\(O(m\log^2 m)\)。但有更好的做法。
考虑容斥。其实总的\(g_j\)对\(ans_i\)的贡献就是\({(-1)}^{i-j}\binom{m-j}{i-j}\)。直接FFT一次就可以得到答案。
ans_{k->i}&=\sum_{j=k}^{i-1}{(-1)^{j-k}}\binom{m-k}{j-k}\binom{m-j}{i-j}\\
&=\sum_{j=k}^{i-1}{(-1)^{j-k}}\frac{(m-k)!(m-j)!}{(j-k)!(m-j)!(i-j)!(m-i)!}\\
&=\sum_{j=k}^{i-1}{(-1)^{j-k}}\frac{(m-k)!}{(j-k)!(i-j)!(m-i)!}\\
&=\frac{(m-k)!}{(m-i)!(i-k)!}\sum_{j=k}^{i-1}{(-1)^{j-k}}\frac{(i-k)!}{(i-j)!(j-k)!}\\
&=\binom{m-k}{i-k}\sum_{j=k}^{i-1}{(-1)^{j-k}}\binom{i-k}{j-k}\\
&=\binom{m-k}{i-k}{(-1)}^{i-k}
\end{align}
\]
那么相邻的小球同色的对数为\(x\)的答案就是\(ans_{m-x}\)。
时间复杂度:\(O(m\log m\log n+q)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
void put(int x)
{
if(!x)
{
putchar('0');
return;
}
static int c[20];
int t=0;
while(x)
{
c[++t]=x%10;
x/=10;
}
while(t)
putchar(c[t--]+'0');
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
const int p=998244353;
int fp(int a,int b)
{
int s=1;
for(;b;b>>=1,a=1ll*a*a%p)
if(b&1)
s=1ll*s*a%p;
return s;
}
int inv[600010];
int fac[600010];
int ifac[600010];
namespace ntt
{
const int g=3;
int rev[600010];
int w1[600010];
int w2[600010];
int n;
void init(int m)
{
n=1;
while(n<=m)
n<<=1;
int i;
rev[0]=0;
for(i=1;i<n;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
for(i=1;i<=n;i<<=1)
{
w1[i]=fp(g,(p-1)/i);
w2[i]=fp(w1[i],p-2);
}
}
void ntt(int *a,int t)
{
int i,j,k;
int u,v,w,wn;
for(i=0;i<n;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=n;i<<=1)
{
wn=(t==1?w1[i]:w2[i]);
for(j=0;j<n;j+=i)
{
w=1;
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=1ll*a[k+i/2]*w%p;
a[k]=(u+v)%p;
a[k+i/2]=(u-v)%p;
w=1ll*w*wn%p;
}
}
}
if(t==-1)
{
int inv=fp(n,p-2);
for(i=0;i<n;i++)
a[i]=1ll*a[i]*inv%p;
}
}
};
int g[600010];
int h[600010];
int ans[600010];
int a[600010];
int s[600010];
int n,m;
void add(int &a,int b)
{
a=(a+b)%p;
}
typedef vector<int> vec;
vec mul(vec &a,vec &b)
{
static int c[600010],d[600010];
int n1=a.size()-1;
int n2=b.size()-1;
int m=n1+n2+1;
ntt::init(m);
int i;
for(i=0;i<=n1;i++)
c[i]=a[i];
for(i=n1+1;i<ntt::n;i++)
c[i]=0;
for(i=0;i<=n2;i++)
d[i]=b[i];
for(i=n2+1;i<ntt::n;i++)
d[i]=0;
ntt::ntt(c,1);
ntt::ntt(d,1);
for(i=0;i<ntt::n;i++)
c[i]=1ll*c[i]*d[i]%p;
ntt::ntt(c,-1);
vec s(n1+n2+1);
for(i=1;i<=n1+n2;i++)
s[i]=c[i];
return s;
}
vec solve(int l,int r)
{
if(l==r)
{
vec s(a[l]+1);
int i;
for(i=1;i<=a[l];i++)
s[i]=1ll*ifac[i-1]*ifac[i]%p*ifac[a[l]-i]%p;
return s;
}
int mid=(l+r)>>1;
vec s1=solve(l,mid);
vec s2=solve(mid+1,r);
return mul(s1,s2);
}
int c[600010];
int d[600010];
priority_queue<pii,vector<pii>,greater<pii> > q;
void gao()
{
int i;
c[0]=0;
for(i=1;i<=m;i++)
c[i]=g[i];
for(i=0;i<=m;i++)
{
d[i]=ifac[i];
if(i&1)
d[i]=-d[i];
}
ntt::init(2*m);
for(i=m+1;i<ntt::n;i++)
c[i]=d[i]=0;
ntt::ntt(c,1);
ntt::ntt(d,1);
for(i=0;i<ntt::n;i++)
c[i]=1ll*c[i]*d[i]%p;
ntt::ntt(c,-1);
for(i=1;i<=m;i++)
g[i]=c[i];
}
int t=0;
vec f[20010];
int main()
{
open("c");
scanf("%d",&n);
int i;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];
}
m=s[n];
inv[0]=inv[1]=fac[0]=fac[1]=ifac[0]=ifac[1]=1;
for(i=2;i<=m;i++)
{
inv[i]=-1ll*p/i*inv[p%i]%p;
#ifndef ONLINE_JUDGE
inv[i]=(inv[i]+p)%p;
#endif
fac[i]=1ll*fac[i-1]*i%p;
ifac[i]=1ll*ifac[i-1]*inv[i]%p;
}
// f[0][0]=1;
int times=1;
for(i=1;i<=n;i++)
times=1ll*times*fac[a[i]-1]%p;
// for(i=1;i<=n;i++)
// {
// times=times*fac[a[i]-1]%p;
// for(j=1;j<=s[i];j++)
// {
// for(k=1;k<=a[i]&&k<=j;k++)
// add(f[i][j],f[i-1][j-k]*ifac[k-1]%p*ifac[a[i]-k]%p*ifac[k]%p);
//// add(f[i][j],f[i-1][j-k]*c(a[i]-1,k-1)%p*ifac[k]%p);
//// f[i][j]=f[i][j]*fac[a[i]-1]%p;
// }
// }
int j;
for(i=1;i<=n;i++)
{
f[i].resize(a[i]+1);
for(j=1;j<=a[i];j++)
f[i][j]=1ll*ifac[j-1]*ifac[j]%p*ifac[a[i]-j]%p;
q.push(pii(a[i],i));
}
t=n;
for(i=1;i<n;i++)
{
int n1=q.top().first;
int x=q.top().second;
q.pop();
int n2=q.top().first;
int y=q.top().second;
q.pop();
f[++t]=mul(f[x],f[y]);
f[x].clear();
f[y].clear();
q.push(pii(n1+n2+1,t));
}
vec ss=f[t];
// vec ss=solve(1,n);
for(i=1;i<=m;i++)
g[i]=1ll*ss[i]*fac[i]%p*times%p;
#ifndef ONLINE_JUDGE
for(i=1;i<=m;i++)
add(g[i],p);
#endif
// g[i]=f[n][i]*fac[i]%p*times%p;
for(i=1;i<=m;i++)
g[i]=1ll*g[i]*fac[m-i]%p;
gao();
for(i=1;i<=m;i++)
{
g[i]=1ll*g[i]*ifac[m-i]%p;
add(g[i],p);
}
// for(i=1;i<=m;i++)
// {
// for(j=1;j<i;j++)
// add(ans[i],h[j]%p*ifac[i-j]%p);
// ans[i]=-ans[i]*ifac[m-i]%p;
// ans[i]=(ans[i]+g[i])%p;
// add(ans[i],-ans[j]*c(m-j,i-j));
// add(ans[i],p);
// h[i]=ans[i]*fac[m-i]%p;
// }
int q;
int x;
scanf("%d",&q);
while(q--)
{
scanf("%d",&x);
printf("%lld\n",g[m-x]);
}
return 0;
}
【XSY2666】排列问题 DP 容斥原理 分治FFT的更多相关文章
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- [题解] Atcoder ABC 213 H Stroll DP,分治FFT
题目 令\(dp_{i,j}\)表示从点1到达点i,路径长度为j的方案数.转移为\(dp_{i,j}=\sum_{(i,v,w)\in E}dp_{v,j-w}p_{i,v,w}\). 显然只能从长度 ...
- HDU5730 Shell Necklace(DP + CDQ分治 + FFT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- 【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ ...
- 【XSY2744】信仰圣光 分治FFT 多项式exp 容斥原理
题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 1525 ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
- Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)
题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
随机推荐
- Dynamics Customer Engagement V9版本配置面向Internet的部署时候下一步按钮不可点击的解决办法
微软动态CRM专家罗勇 ,回复299或者20190120可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . Dynamics 3 ...
- 学习安卓开发[2] - 在Activity中托管Fragment
目录 在上一篇学习安卓开发[1]-程序结构.Activity生命周期及页面通信中,学习了Activity的一些基础应用,基于这些知识,可以构建一些简单的APP了,但这还远远不够,本节会学习如何使用Ac ...
- Mac上webstorm与git仓库建立连接
1.打开Mac终端,输入$ cd ~/.ssh检查.ssh文件是否存在($在终端中存在,不需要自己输入),不存在,进行步骤2 2.如果没有安装ssh文件,输入命令$ssh -v,安装ssh文件,成功时 ...
- Vysor破解助手for Linux and macOS
<Vysor Pro破解助手>提供了Windows下的Vysor破解工具,为了使用Linux及macOS同学的方便,最近整理了Linux及macOS版的Vysor破解助手. Linux版V ...
- IDEA工具教程
刚从myeclipse工具转成IntelliJ IDEA工具,在“传智播客*黑马程序员”学习了相关操作和配置,因此整理在该文章中. 文章大纲 教程文档下载地址 链接:https://pan.bai ...
- Oracle database link中查询会开启事务吗?
关于oracle database link,使用database link相关的查询语句是否会开启事务呢?我们知道,在数据库中一个简单的SELECT查询语句不会产生事务(select for upd ...
- c/c++ 重载运算符 函数调用运算符
重载运算符 函数调用运算符 把一个类的对象a,当成函数来使用,比如a(),所以需要重载operator()方法.重载了函数调用运算符的类的对象,就是函数对象了. 还有什么是函数对象呢??? lambd ...
- python3 多线程的使用
示例1: import threadingfrom time import sleep class forThread(threading.Thread): def __init__(self, ev ...
- Cs231n课堂内容记录-Lecture 8 深度学习框架
Lecture 8 Deep Learning Software 课堂笔记参见:https://blog.csdn.net/u012554092/article/details/78159316 今 ...
- ABAP 7.53 中的ABAP SQL(原Open SQL)新特性
S/4 HANA 1809 已经在上月发布,随之而来的是ABAP 7.53. 本文是更新文档中ABAP SQL的部分的翻译. 本次更新的内容较多,主要内容包括:Open SQL更名为ABAP SQL: ...