前置芝士

关于这个题,你必须知道一个这样奇奇怪怪的式子啊QAQ

\[d(i*j)= \sum_{x|i} \sum_{y|j}[gcd(x,y)=1]
\]

留坑,先感性理解:后面那个gcd是为了去重。

UPD:

正文

根据前一部分,我们所要推倒的式子就变成了

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}\left [ gcd(x,y)=1 \right ]
\]

我们可以改变一下枚举顺序,原来是枚举原数,现在我们改为枚举约数,再利用数学性质将其倍数全部筛掉,式子即变成

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{j} \right \rfloor\left [ gcd(i,j)=1 \right ]
\]

于是,我们可以把里面的那个东西稍稍的替换一下

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{j} \right \rfloor\sum_{d|gcd(i,j)}\mu (d)
\]

根据莫比乌斯函数的性质,这两个东西显然是等价的。

然后我们可以在和式枚举时就将gcd消掉,同时将d调整到和式最外层

然后整个式子就变成

\[ans=\sum_{d=1}^{min(n,m)}\mu (d)\sum_{x=1}^{\left \lfloor \frac{n}{x} \right \rfloor}\left \lfloor \frac{n}{dx} \right \rfloor\sum_{y=1}^{\left \lfloor \frac{m}{y} \right \rfloor}\left \lfloor \frac{m}{dy} \right \rfloor
\]

唯一的难点是,$\sum_{x=1}^{\left \lfloor \frac{n}{x} \right \rfloor}\left \lfloor \frac{n}{dx} \right \rfloor $

将\(n/x\),换成一个变量,就会发现,这东西也是可以分块的!!!

然后就可以愉快的整除分块了

贴代码

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=5e4+10;
int miu[maxn],prime[maxn],t;
bool vis[maxn];
ll g[maxn];
void get_g()
{
for(int i=1;i<=maxn;++i)
{
int l,r;
for(l=1;l<=i;l=r+1)
{
r=i/(i/l);
g[i]+=(i/l)*(r-l+1);
}
}
}//同样分块处理
void mobius()
{
miu[1]=1;
for(int i=2;i<=maxn;i++)
{
if(vis[i]==0)
miu[i]=-1,++t,prime[t]=i;
for(int j=1;j<=t&&i*prime[j]<=maxn;++j)
{
vis[i*prime[j]]=1;
if(!(i%prime[j])) break;
else miu[i*prime[j]]-=miu[i];
}
}
for(int i=1;i<=maxn;++i)
miu[i]+=miu[i-1];
}
int main()
{
get_g();
mobius();
int t;
int n,m;
scanf("%d",&t);
for(int _=1;_<=t;++_)
{
ll ans=0;
scanf("%d%d",&n,&m);
int tmp=min(n,m);
long long l,r;
for(l=1;l<=tmp;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=(miu[r]-miu[l-1])*g[n/l]*g[m/l];
}
printf("%lld\n",ans);
}
}

洛谷 P3327 【[SDOI2015]约数个数和】的更多相关文章

  1. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  2. 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E

    https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...

  3. 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】

    题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...

  4. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  5. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...

  6. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  7. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  8. Luogu P3327 [SDOI2015]约数个数和

    又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...

  9. 并不对劲的bzoj3994:loj2185:p3327[SDOI2015]约数个数和

    题目大意 设d(x)为x的约数个数,\(t\)组询问,给定\(n,m\)(\(t,m,n\leq5*10^4\)),求$ \sum^n_{i=1}\sum^m_{j=1}d(i*j)$ 题解 假设\( ...

  10. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

随机推荐

  1. Android 获取 上下文环境参数 getResources

    1----context.getResources().getConfiguration().orientation;//获取屏幕方向int类型,1:portrait,2:landscape 2--- ...

  2. Node.js模块导入导出

    这篇文章本来是想模块导入导出和事件循环一起写的,但是感觉一起写的话会太长了,所以就分开两篇文章写吧.下一篇会重点介绍一下js中的事件循环,js代码到底是以何种顺序去执行的呢?我相信你看懂了事件循环再去 ...

  3. c# winform多线程实时更新控件

    //创建委托         private delegate void SetTextCallback(string text);     /// <summary>         / ...

  4. 搭建一个dubbo+zookeeper平台

    本篇主要是来分享从头开始搭建一个dubbo+zookeeper平台的过程,其中会简要介绍下dubbo服务的作用. 首先,看下一般网站架构随着业务的发展,逻辑越来越复杂,数据量越来越大,交互越来越多之后 ...

  5. powerdesigner生成mysql带注释的ER图

    1.安装PowerDesigner的 参考 https://blog.csdn.net/sinat_34104446/article/details/79885141 2配置逆向工程 2.1新建模型p ...

  6. HBase源码实战:BufferedMutator

    /** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agr ...

  7. springMVC DispatcherServlet类关系图

  8. PHP命令执行与防范

    命令执行漏洞是指攻击者可以随意执行系统命令,是高危漏洞之一. 命令连接符:&  &&   ||     | 如:ping www.baidu.com && ne ...

  9. Django模板语言(Template)

    1.变量 变量相关用 { { } }   逻辑相关用{% %} 2.Filter过滤器 (1)default 如果一个变量是false或者为空,使用给定的默认值. 否则,使用变量的值.   {{ va ...

  10. 搭建vue.js环境

    一.安装Node.js (以下安装环境均为win10) 下载链接:https://nodejs.org/en/download/ 官网给出了两个版本,LTS和Curren.字面意思是推荐大多数用户使用 ...