前置芝士

关于这个题,你必须知道一个这样奇奇怪怪的式子啊QAQ

\[d(i*j)= \sum_{x|i} \sum_{y|j}[gcd(x,y)=1]
\]

留坑,先感性理解:后面那个gcd是为了去重。

UPD:

正文

根据前一部分,我们所要推倒的式子就变成了

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}\left [ gcd(x,y)=1 \right ]
\]

我们可以改变一下枚举顺序,原来是枚举原数,现在我们改为枚举约数,再利用数学性质将其倍数全部筛掉,式子即变成

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{j} \right \rfloor\left [ gcd(i,j)=1 \right ]
\]

于是,我们可以把里面的那个东西稍稍的替换一下

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{j} \right \rfloor\sum_{d|gcd(i,j)}\mu (d)
\]

根据莫比乌斯函数的性质,这两个东西显然是等价的。

然后我们可以在和式枚举时就将gcd消掉,同时将d调整到和式最外层

然后整个式子就变成

\[ans=\sum_{d=1}^{min(n,m)}\mu (d)\sum_{x=1}^{\left \lfloor \frac{n}{x} \right \rfloor}\left \lfloor \frac{n}{dx} \right \rfloor\sum_{y=1}^{\left \lfloor \frac{m}{y} \right \rfloor}\left \lfloor \frac{m}{dy} \right \rfloor
\]

唯一的难点是,$\sum_{x=1}^{\left \lfloor \frac{n}{x} \right \rfloor}\left \lfloor \frac{n}{dx} \right \rfloor $

将\(n/x\),换成一个变量,就会发现,这东西也是可以分块的!!!

然后就可以愉快的整除分块了

贴代码

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=5e4+10;
int miu[maxn],prime[maxn],t;
bool vis[maxn];
ll g[maxn];
void get_g()
{
for(int i=1;i<=maxn;++i)
{
int l,r;
for(l=1;l<=i;l=r+1)
{
r=i/(i/l);
g[i]+=(i/l)*(r-l+1);
}
}
}//同样分块处理
void mobius()
{
miu[1]=1;
for(int i=2;i<=maxn;i++)
{
if(vis[i]==0)
miu[i]=-1,++t,prime[t]=i;
for(int j=1;j<=t&&i*prime[j]<=maxn;++j)
{
vis[i*prime[j]]=1;
if(!(i%prime[j])) break;
else miu[i*prime[j]]-=miu[i];
}
}
for(int i=1;i<=maxn;++i)
miu[i]+=miu[i-1];
}
int main()
{
get_g();
mobius();
int t;
int n,m;
scanf("%d",&t);
for(int _=1;_<=t;++_)
{
ll ans=0;
scanf("%d%d",&n,&m);
int tmp=min(n,m);
long long l,r;
for(l=1;l<=tmp;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=(miu[r]-miu[l-1])*g[n/l]*g[m/l];
}
printf("%lld\n",ans);
}
}

洛谷 P3327 【[SDOI2015]约数个数和】的更多相关文章

  1. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  2. 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E

    https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...

  3. 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】

    题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...

  4. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  5. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...

  6. LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)

    LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...

  7. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  8. Luogu P3327 [SDOI2015]约数个数和

    又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...

  9. 并不对劲的bzoj3994:loj2185:p3327[SDOI2015]约数个数和

    题目大意 设d(x)为x的约数个数,\(t\)组询问,给定\(n,m\)(\(t,m,n\leq5*10^4\)),求$ \sum^n_{i=1}\sum^m_{j=1}d(i*j)$ 题解 假设\( ...

  10. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

随机推荐

  1. Lua在Redis中的应用

    转载至笑松小站http://blog.seoui.com/2018/01/27/redis-lua/ redis从2.6版本开始内置支持Lua解释器,解释器提供了3个函数来处理redis的命令redi ...

  2. c/c++ 多线程 std::call_once

    多线程 std::call_once 转自:https://blog.csdn.net/hengyunabc/article/details/33031465 std::call_once的特点:即使 ...

  3. python文章装饰器理解12步

    1. 函数 在python中,函数通过def关键字.函数名和可选的参数列表定义.通过return关键字返回值.我们举例来说明如何定义和调用一个简单的函数: def foo(): return 1 fo ...

  4. java-----理解java的三大特性之多态

    的java提高篇(四)-----理解的java的三大特性之多态 面向对象编程有三大特性:封装,继承,多态. 封装隐藏了类的内部实现机制,可以在不影响使用的情况下改变类的内部结构,同时也保护了数据.对外 ...

  5. 6.2Python数据处理篇之pandas学习系列(二)Series数据类型

    目录 目录 (一)Series的组成 (二)Series的创建 1.从标量中创建Series数据 2.从列表中创建Series数据 3.从字典中创建Series数据 4.从ndarry中创建Serie ...

  6. 修改 TeamViewer ID 的方法

    TeamViewer 使用频繁后会被判定为商业用途,不可用.此软件的账号和设备mac地址绑定. 修改TeamViewer ID后可以重新开始使用.下述方法可以成功修改TeamViewer ID. 关闭 ...

  7. ZooInspector 连接不到 Zookeeper 的解决方法

    Zookeeper正常启动后,在使用 ZooInspector 连接 Zookeeper 时出现了连接不上的问题. [root@localhost bin]# zkServer.sh start Zo ...

  8. jdk 环境变量

    1. jdk安装后的目录 2.JAVA_HOME C:\Program Files\Java\jdk1.8.0_172 3.PATH %JAVA_HOME%\bin 4.CLASSPATH .;%JA ...

  9. android开发学习 ------- 关于getSupportFragmentManager()不可用的问题

    在Android开发中,少不了Fragment的运用. 目前在实际运用中,有v-4包下支持的Fragment以及app包下的Fragment,这两个包下的FragmentManager获取方式有点区别 ...

  10. CF1012A Photo of The Sky

    CF1012A Photo of The Sky 有 \(n\) 个打乱的点的 \(x,\ y\) 轴坐标,现在告诉你这 \(2\times n\) 个值,问最小的矩形面积能覆盖住n个点且矩形长和宽分 ...