洛谷 P3327 【[SDOI2015]约数个数和】
前置芝士
关于这个题,你必须知道一个这样奇奇怪怪的式子啊QAQ
\]
留坑,先感性理解:后面那个gcd是为了去重。
UPD:

正文
根据前一部分,我们所要推倒的式子就变成了
\]
我们可以改变一下枚举顺序,原来是枚举原数,现在我们改为枚举约数,再利用数学性质将其倍数全部筛掉,式子即变成
\]
于是,我们可以把里面的那个东西稍稍的替换一下
\]
根据莫比乌斯函数的性质,这两个东西显然是等价的。
然后我们可以在和式枚举时就将gcd消掉,同时将d调整到和式最外层
然后整个式子就变成
\]
唯一的难点是,$\sum_{x=1}^{\left \lfloor \frac{n}{x} \right \rfloor}\left \lfloor \frac{n}{dx} \right \rfloor $
将\(n/x\),换成一个变量,就会发现,这东西也是可以分块的!!!
然后就可以愉快的整除分块了
贴代码
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=5e4+10;
int miu[maxn],prime[maxn],t;
bool vis[maxn];
ll g[maxn];
void get_g()
{
for(int i=1;i<=maxn;++i)
{
int l,r;
for(l=1;l<=i;l=r+1)
{
r=i/(i/l);
g[i]+=(i/l)*(r-l+1);
}
}
}//同样分块处理
void mobius()
{
miu[1]=1;
for(int i=2;i<=maxn;i++)
{
if(vis[i]==0)
miu[i]=-1,++t,prime[t]=i;
for(int j=1;j<=t&&i*prime[j]<=maxn;++j)
{
vis[i*prime[j]]=1;
if(!(i%prime[j])) break;
else miu[i*prime[j]]-=miu[i];
}
}
for(int i=1;i<=maxn;++i)
miu[i]+=miu[i-1];
}
int main()
{
get_g();
mobius();
int t;
int n,m;
scanf("%d",&t);
for(int _=1;_<=t;++_)
{
ll ans=0;
scanf("%d%d",&n,&m);
int tmp=min(n,m);
long long l,r;
for(l=1;l<=tmp;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=(miu[r]-miu[l-1])*g[n/l]*g[m/l];
}
printf("%lld\n",ans);
}
}
洛谷 P3327 【[SDOI2015]约数个数和】的更多相关文章
- 洛谷P3327 - [SDOI2015]约数个数和
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...
- 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N∑j=1Md(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- Luogu P3327 [SDOI2015]约数个数和
又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...
- 并不对劲的bzoj3994:loj2185:p3327[SDOI2015]约数个数和
题目大意 设d(x)为x的约数个数,\(t\)组询问,给定\(n,m\)(\(t,m,n\leq5*10^4\)),求$ \sum^n_{i=1}\sum^m_{j=1}d(i*j)$ 题解 假设\( ...
- luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演
题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...
随机推荐
- java新知识系列 二
1:数据库事务隔离以及事务隔离的级别 数据库事务隔离: 在数据库操作中,为了有效保证并发读取数据的正确性,提出的事务隔离级别:为了解决更新丢失,脏读,不可重读(包括虚读和幻读)等问题在标准SQL规 ...
- DVWA 黑客攻防演练(四)文件包含 File Inclusion
文件包含(file Inclusion)是一种很常见的攻击方式,主要是通过修改请求中变量从而访问了用户不应该访问的文件.还可以通过这个漏洞加载不属于本网站的文件等.下面一起来看看 DVWA 中的文件包 ...
- 取消导航栏navigationBar的半透明/毛玻璃效果
iOS 7.0以上的系统,导航栏默认有毛玻璃效果,遮住了颜色 原因是7.0以上的系统,导航栏默认有毛玻璃效果,遮住了颜色,取消掉这个效果就行了. if( ([[[UIDevice currentDev ...
- Flex Builder 4.6切换语言
一.修改Flex builder 1.用无格式编辑器打开FlashBuilder.ini 2.把zh_CN替换成"en_US" 二.修改MyEclipse插件 1.用无格式编辑器打 ...
- ubuntu14.04 安装 php Composer时 composer:未找到命令
在Ubuntu14.04环境下,进行composer安装时,各个方面都很顺利,安装完成后,出现了如下的错误提示: 百思不得其解!本人的环境是Ubuntu14.04 ,安装过程也是严格按照compose ...
- 复制命令(ROBOCOPY)
ROBOCOPY 命令: // 描述: 相比较 xcopy.copy 来说,复制的功能就强大很多, xcopy.copy 是单线程的,robocopy是多线程的,但是和一些专业的复制软件相比速度还是 ...
- LeetCode算法题-Search in a Binary Search Tree(Java实现)
这是悦乐书的第295次更新,第314篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第163题(顺位题号是700).给定一个二叉搜索树(BST)的和正整数val. 你需要在 ...
- Selenium自动化测试-unittest单元测试框架使用
一.什么是unittest 这里我们将要用的unittest是python的单元测试框架,它的官网是 https://docs.python.org/2/library/unittest.html,在 ...
- 周末班:Python基础之面向对象基础
面向对象基础 面向对象和面向过程 编程思想是什么,就是用代码解决现实生活中问题的思路. 面向过程 核心点在过程二字,过程指的是解决问题的步骤,说白了就是先做什么再干什么.这种解决问题的思路就好比是工厂 ...
- eclipse去除对js文件的检测