Contest

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 766 Accepted Submission(s): 341

Problem Description
In the ACM International Collegiate Programming Contest, each team consist of three students. And the teams are given 5 hours to solve between 8 and 12 programming problems.



On Mars, there is programming contest, too. Each team consist of N students. The teams are given M hours to solve M programming problems. Each team can use only one computer, but they can’t cooperate to solve a problem. At the beginning of the ith hour, they
will get the ith programming problem. They must choose a student to solve this problem and others go out to have a rest. The chosen student will spend an hour time to program this problem. At the end of this hour, he must submit his program. This program is
then run on test data and can’t modify any more.



Now, you have to help a team to find a strategy to maximize the expected number of correctly solved problems.



For each problem, each student has a certain probability that correct solve. If the ith student solve the jth problem, the probability of correct solve is Pij .



At any time, the different between any two students’ programming time is not more than 1 hour. For example, if there are 3 students and there are 5 problems. The strategy {1,2,3,1,2}, {1,3,2,2,3} or {2,1,3,3,1} are all legal. But {1,1,3,2,3},{3,1,3,1,2} and
{1,2,3,1,1} are all illegal.



You should find a strategy to maximize the expected number of correctly solved problems, if you have know all probability
Input
The first line of the input is T (1 ≤ T ≤ 20), which stands for the number of test cases you need to solve.



The first line of each case contains two integers N ,M (1 ≤ N ≤ 10,1 ≤ M ≤ 1000),denoting the number of students and programming problem, respectively.



The next N lines, each lines contains M real numbers between 0 and 1 , the jth number in the ith line is Pij .
Output
For each test case, print a line “Case #t: ”(without quotes, t means the index of the test case) at the beginning. Then a single real number means the maximal expected number of correctly solved problems if this team follow the best
strategy, to five digits after the decimal point. Look at the output for sample input for details.
Sample Input
1
2 3
0.6 0.3 0.4
0.3 0.7 0.9
Sample Output
Case #1: 2.20000
Source
Recommend
hujie | We have carefully selected several similar problems for you:5065

pid=5064">
5064

pid=5063">
5063
5062 5061

ACM开赛在即。没有模板是决然混不下去的(Q:有模板就混得下去吗?A:Think More,,,)

So, 这是我有生之年(喂!)写得第一份模板。

说说题目,本题有n位学生和m道题。要求在任一中途时刻任2名学生做题差不超过2(防抱大腿麽,。)。问解题数期望。

易证每n道题必为n位学生各做一道(1-n的全排列),故可分成ceil((double)m/(double)n)。分别求就可以

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define MAXT (200+10)
#define MAXN (2000+10)
#define MAXM (12000*2+10)
#define INF (2139062143)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define eps 1e-6
int T;
double a[10+10][1000+10];
class feiyongliu
{
public:
int n,s,t;
int q[10000];
int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size;
double cost[MAXM];
void addedge(int u,int v,int w,double c)
{
edge[++size]=v;
weight[size]=w;
cost[size]=c;
next[size]=pre[u];
pre[u]=size;
}
void addedge2(int u,int v,int w,double c){addedge(u,v,w,c),addedge(v,u,0,-c);}
bool b[MAXN];
double d[MAXN];
int pr[MAXN],ed[MAXN];
bool SPFA(int s,int t)
{
For(i,n) d[i]=INF;
MEM(b)
d[q[1]=s]=0;b[s]=1;
int head=1,tail=1;
while (head<=tail)
{
int now=q[head++];
Forp(now)
{
int &v=edge[p];
if (weight[p]&&d[now]+cost[p]<d[v])
{
d[v]=d[now]+cost[p];
if (!b[v]) b[v]=1,q[++tail]=v;
pr[v]=now,ed[v]=p;
}
}
b[now]=0;
}
return fabs(d[t]-INF)>eps;
}
double totcost; double CostFlow(int s,int t)
{
while (SPFA(s,t))
{
int flow=INF;
for(int x=t;x^s;x=pr[x]) flow=min(flow,weight[ed[x]]);
totcost+=(double)flow*d[t];
for(int x=t;x^s;x=pr[x]) weight[ed[x]]-=flow,weight[ed[x]^1]+=flow;
}
return totcost;
}
void mem(int n,int t)
{
(*this).n=n;
size=1;
totcost=0;
MEM(pre) MEM(next)
}
}S;
int main()
{
// freopen("test_contest2.in", "r", stdin);
// freopen(".out", "w", stdout);
cin>>T;
For(t,T)
{
int n,m; //m:prob n:people
cin>>n>>m;
For(i,n)
{
For(j,m) scanf("%lf",&a[i][j]);
}
double ans=0;
For(k,m/n)
{
S.mem(m+n+2,m+n+2);
S.s=1,S.t=1+n+n+1;
For(i,n)
{
S.addedge2(1,i+1,1,0);
}
For(i,n) For(j,n) S.addedge2(1+i,1+n+j,1,-a[i][j+(k-1)*n]);
For(j,n) S.addedge2(1+n+j,S.t,1,0);
ans+=S.CostFlow(S.s,S.t);
}
if (m%n)
{
S.mem(m+n+2,m+n+2);
S.s=1,S.t=1+n+m%n+1;
For(i,n)
{
S.addedge2(1,i+1,1,0);
}
For(i,n) For(j,m%n) S.addedge2(1+i,1+n+j,1,-a[i][j+m/n*n]);
For(j,m%n) S.addedge2(1+n+j,S.t,1,0);
ans+=S.CostFlow(S.s,S.t);
}
printf("Case #%d: %.5lf\n",t,-ans);
}
return 0;
}

HDU 5045(Contest-费用流)[template:费用流]的更多相关文章

  1. hdu - 5045 - Contest(国家压缩dp)

    意甲冠军:N个人M通过主打歌有自己的期望,每个问题发送人玩.它不能超过随机播放的次数1,追求最大业绩预期 (1 ≤ N ≤ 10,1 ≤ M ≤ 1000). 主题链接:pid=5045" ...

  2. HDU 5045 Contest(状压DP)

    Problem Description In the ACM International Collegiate Programming Contest, each team consist of th ...

  3. [ACM] hdu 5045 Contest (减少国家Dp)

    Contest Problem Description In the ACM International Collegiate Programming Contest, each team consi ...

  4. HDU 5045 Contest

    pid=5045">主题链接~~> 做题感悟:比赛时这题后来才写的,有点小尴尬.两个人商议着写写了非常久才写出来,I want to Powerful ,I believe me ...

  5. hdu 5045 Contest(状态压缩DP)

    题解:我们使用一个二位数组dp[i][j]记录进行到第i个任务时,人组合为j时的最大和(这里的j我们用二进制的每位相应一个人). 详细见代码: #include <iostream> #i ...

  6. HIT2543 Stone IV(一定费用内的最大流)

    题目大概说,有n个从0到n-1的城市,要从城市0运送石头到城市1,运送石头的单价是p.城市间的有m条双向路相连,路都有能运送石头的限额c1,如果超过限额运送石头的单价就要提高c2.问在总花费c以内能运 ...

  7. BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)

    第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然  后跑最小费用最大流就OK了. ---- ...

  8. 【BZOJ1834】网络扩容(最大流,费用流)

    [BZOJ1834]网络扩容(最大流,费用流) 题面 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下 ...

  9. 【BZOJ3130】费用流(最大流,二分)

    [BZOJ3130]费用流(最大流,二分) 题面 Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一 ...

随机推荐

  1. c++ - Create empty json array with jsoncpp - Stack Overflow

    python中multiprocessing.pool函数介绍_正在拉磨_新浪博客     multiprocessing.pool c++ - Create empty json array wit ...

  2. weblogic公布的项目用途myeclipse正常启动,点击startWeblogic.cmd报错解决方案

    今天在做项目中遇到的问题.使用weblogic公布的项目,使用myeclipse正常启动,但点击startWeblogic.cmd会报错.我提出了一个class not found.楚是什么问题.后来 ...

  3. Python获取当地的天气和随意城市的天气

    先从中国天气网得到数据('http://www.weather.com.cn/data/cityinfo/'+城市编码),每一个城市都有各自的编码,怎样得到用户所在地的城市编码呢?用一个网页就是专门干 ...

  4. BZOJ 1260: [CQOI2007]涂色paint( 区间dp )

    区间dp.. dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数. 考虑转移 : l == r 则 dp( l , r ) = 1 ( 显然 ) s[ l ] = ...

  5. 【转】android加载大量图片内存溢出的三种解决办法

    方法一: 在从网络或本地加载图片的时候,只加载缩略图. /** * 按照路径加载图片 * @param path 图片资源的存放路径 * @param scalSize 缩小的倍数 * @return ...

  6. QtSoap调用Web Service(QtSoap是非官方应用)

    今天学习如何用QtSoap访问Web Service服务.这里调用的是查询QQ在线状态的服务qqOnlineWebService.调用的几个步骤: 1.创建QtSoapMessage对象 messag ...

  7. C#中调用Windows API时的数据类型对应关系

    原文 C#中调用Windows API时的数据类型对应关系 BOOL=System.Int32 BOOLEAN=System.Int32 BYTE=System.UInt16 CHAR=System. ...

  8. 京东金融集团BD部门招聘 BD经理

    新标签页http://74.55.154.136/ 互联网招聘_cnBeta.COM 北京 / 全职 / 20k-30k / 经验3-5年 / 本科及以上 / 1天前发布 职位诱惑 : 五险一金 职位 ...

  9. Swift - 使用UI Dynamics给UIKit组件添加移动吸附行为

    UI Dynamics是UIKit的一个新组成部分,它向iOS中的视图提供了与物理学有关的功能和动画.可以让你向视图中引入力和物理属性,可以让你的视图弹跳,舞动,受重力影响等等. 下面通过样例,演示使 ...

  10. 关于SSH框架设计的一些理解

    近期在学习企业开发领域非常流行的SSH框架(Struts.Hibernate.Spring).因为之前有做过原生的Servlet+JSP的项目,所以在学习过程中我会跟原生开发模式进行对照,在这里我把自 ...