Coloring Trees
2 seconds
256 megabytes
standard input
standard output
ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.
Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.
ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.
The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.
ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.
Please note that the friends can't color the trees that are already colored.
The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.
The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.
Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.
Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print - 1.
3 2 2
0 0 0
1 2
3 4
5 6
10
3 2 2
2 1 2
1 3
2 4
3 5
-1
3 2 2
2 0 0
1 3
2 4
3 5
5
3 2 3
2 1 2
1 3
2 4
3 5
0
In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).
In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is - 1.
In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.
分析:dp[i][j][k]表示前i棵树,第i棵树用了j染料,美丽值为k的最小花费;
转移时把前一棵树状态转移过来即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
const int maxn=1e2+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,q,co[maxn][maxn],c[maxn];
ll dp[maxn][maxn][maxn];
int main()
{
int i,j;
rep(i,,)rep(j,,)rep(k,,)dp[i][j][k]=1e18;
scanf("%d%d%d",&n,&m,&q);
rep(i,,n)scanf("%d",&c[i]);
rep(i,,n)rep(j,,m)scanf("%d",&co[i][j]);
i=;
if(i==)
{
if(c[i])dp[][c[i]][]=;
else
{
rep(j,,m)dp[][j][]=co[][j];
}
}
rep(i,,n)
{
if(c[i])
{
rep(j,,m)rep(k,,)
{
if(j==c[i])dp[i][j][k]=min(dp[i-][j][k],dp[i][j][k]);
else dp[i][c[i]][k]=min(dp[i-][j][k-],dp[i][c[i]][k]);
}
}
else
{
rep(j,,m)rep(k,,)rep(t,,m)
{
dp[i][j][k]=min(dp[i][j][k],t==j?dp[i-][t][k]+co[i][j]:dp[i-][t][k-]+co[i][j]);
}
}
}
ll mi=1e18;
rep(i,,m)mi=min(dp[n][i][q],mi);
printf("%lld\n",mi==1e18?-:mi);
//system("pause");
return ;
}
Coloring Trees的更多相关文章
- Codeforces Round #369 (Div. 2) C. Coloring Trees DP
C. Coloring Trees ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...
- CodeForces #369 C. Coloring Trees DP
题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少. K:连续的颜色为一组 ...
- C. Coloring Trees DP
传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...
- codeforces 711C C. Coloring Trees(dp)
题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Code Forces 711C Coloring Trees
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划
C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...
- Codeforces 677C. Coloring Trees dp
C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...
随机推荐
- 决策树J48算法
1.J48原理 基于从上到下的策略,递归的分治策略,选择某个属性放置在根节点,为每个可能的属性值产生一个分支,将实例分成多个子集,每个子集对应一个根节点的分支,然后在每个分支上递归地重复这个过程.当所 ...
- 获取IP地址bash[转载]
ipaddr=`/sbin/ifconfig | grep 'inet addr:' | grep -v '127.0.0.1' | cut -d : -f2 | awk '{print $1}'`
- android 焦点问题
今天解决了一个Android平台下的焦点问题.发现其中关键问题的所在是Android的touchMode.从JavaSwing平台过来的人,都会关注setFocusable()和requestFocu ...
- [转载] 关于Windows Boot Manager、Bootmgfw.efi、Bootx64.efi、bcdboot.exe 的详解
原帖: http://bbs.wuyou.net/forum.php?mod=viewthread&tid=303679 前言:1.本教程针对于UEFI启动来叙述的,根据普遍的支持UEFI的机 ...
- MyEclipse10.6、Maven、svn集成
这几天整理maven,根据开发部署需要,需要把原先的myeclipse下的普通javaWeb工程用maven管理,弄了2天,主要还是在jar包的引入上,总是少- -! 好了,下面记录一下我的安装过程: ...
- NSNumber(把数字存进数组字典等的问题)
官方文档地址https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSNum ...
- auto ash v1
startdate=$1enddate=$2#reporttype=$3#reportformat='text'oraclehome=`echo $ORACLE_HOME` dbid=`sqlplus ...
- UIView回调方法(可以在添加子视图等,做一些额外操作)
didAddSubview didMoveToSuperview willMoveToSuperview didMoveToWindow willMoveToWindow willRemoveSubv ...
- Zookeeper: configuring on centos7
thispassage is referenced, appreciated. ZooKeeper installation: Download from this site Install java ...
- java数据结构之二叉树的实现
java二叉树的简单实现,可以简单实现深度为n的二叉树的建立,二叉树的前序遍历,中序遍历,后序遍历输出. /** *数据结构之树的实现 *2016/4/29 * **/ package cn.Link ...