标题效果:鉴于m整数,之前存在的所有因素t素数。问:有多少子集。他们的产品是数量的平方。

解题思路:

全然平方数就是要求每一个质因子的指数是偶数次。

对每一个质因子建立一个方程。

变成模2的线性方程组。

求解这个方程组有多少个自由变元。答案就是 2^p - 1 。(-1是去掉空集的情况)

注意因为2^p会超出数据范围所以还须要用高精度算法。

200. Cracking RSA

time limit per test: 0.25 sec.

memory limit per test: 65536 KB
input: standard

output: standard
The following problem is somehow related to the final stage of many famous integer factorization algorithms involved in some cryptoanalytical problems, for example cracking well-known RSA public key system. 



The most powerful of such algorithms, so called quadratic sieve descendant algorithms, utilize the fact that if n = pq where p and q are large unknown primes needed to be found out, then if v2=w2(mod n), u ≠ v (mod n) and u ≠ -v (mod n),
then gcd(v + w, n) is a factor of n (either p or q). 



Not getting further in the details of these algorithms, let us consider our problem. Given m integer numbers b1, b2, ..., bm such that all their prime factors are from the set of first t primes, the task is to find such a subset
S of {1, 2, ..., m} that product of bi for i from S is a perfect square i.e. equal to u2 for some integer u. Given such S we get one pair for testing (product of S elements stands for v when w is known from other steps of algorithms which
are of no interest to us, testing performed is checking whether pair is nontrivial, i.e. u ≠ v (mod n) and u ≠ -v (mod n)). Since we want to factor n with maximum possible probability, we would like to get as many such sets as possible. So the interesting
problem could be to calculate the number of all such sets. This is exactly your task. 


Input


The first line of the input file contains two integers t and m (1 ≤ t ≤ 100, 1 ≤ m ≤ 100). The second line of the input file contains m integer numbers bi such that all their prime factors are from t first primes (for example, if t = 3 all their
prime factors are from the set {2, 3, 5}). 1 ≤ bi ≤ 109 for all i. 


Output


Output the number of non-empty subsets of the given set {bi}, the product of numbers from which is a perfect square 




Sample test(s)


Input

3 4 9 20 500 3 
Output




#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x) const int maxn = 210; using namespace std; bool f[maxn+1000];
int k[maxn+1000];
int a[maxn][maxn];
int num[maxn];
int equ, var;
char str1[maxn], str2[maxn]; void Add(char a[], char b[], char c[])
{
int len1 = strlen(a);
int len2 = strlen(b);
int n = max(len1, len2);
int add = 0;
for(int i = 0; i < n; i++)
{
int cnt = 0;
if(i < len1) cnt += a[i]-'0';
if(i < len2) cnt += b[i]-'0';
cnt += add;
add = cnt/10;
c[i] = cnt%10+'0';
}
if(add) c[n++] = add+'0';
c[n] = 0;
} void Sub_1(char a[])
{
int s = 0;
while(a[s] == '0') s++;
a[s]--;
for(int i = 0; i < s; i++)
a[i] = '9';
int len = strlen(a);
while(len > 1 && a[len-1] == '0') len--;
a[len] = 0;
} void Prime()
{
int t = 0;
memset(f, false, sizeof(f));
for(int i = 2; i <= 1005; i++)
{
if(!f[i])
k[t++] = i;
for(int j = 0; j < t; j++)
{
if(i*k[j] > 1005)
break;
f[i*k[j]] = true;
if(i%k[j] == 0)
break;
}
}
} int Gauss()
{
int row, col;
int max_r;
row = col = 0;
while(row < equ && col < var)
{
max_r = row;
for(int i = row+1; i < equ; i++)
{
if(a[i][col]) max_r = i;
}
if(a[max_r][col] == 0)
{
col++;
continue;
}
if(max_r != row)
{
for(int j = col; j <= var; j++) swap(a[max_r][j], a[row][j]);
}
for(int i = row+1; i < equ; i++)
{
if(a[i][col] == 0) continue;
for(int j = col; j <= var; j++) a[i][j] ^= a[row][j];
}
col++;
row++;
}
return var-row;
} int main()
{
Prime();
int n, m;
while(cin >>n>>m)
{
memset(a, 0, sizeof(a));
for(int i = 0; i < m; i++) cin >>num[i];
equ = n;
var = m;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
int ans = 0;
while(num[j]%k[i] == 0)
{
ans ++;
num[j]/=k[i];
}
if(ans%2) a[i][j] = 1;
}
}
int N = Gauss();
strcpy(str1, "1");
for(int i = 0; i < N; i++)
{
Add(str1, str1, str2);
strcpy(str1, str2);
}
Sub_1(str1);
for(int i = strlen(str1)-1; i >= 0; i--) cout<<str1[i];
cout<<endl;
}
return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

SGU 200. Cracking RSA(高斯消元+高精度)的更多相关文章

  1. SGU 200.Cracking RSA(高斯消元)

    时间限制:0.25s 空间限制:4M 题意: 给出了m(<100)个数,这m个数的质因子都是前t(<100)个质数构成的. 问有多少个这m个数的子集,使得他们的乘积是完全平方数. Solu ...

  2. Acdream1217 Cracking' RSA(高斯消元)

    题意:给你m个数(m<=100),每个数的素因子仅来自于前t(t<=100)个素数,问这m个数的非空子集里,满足子集里的数的积为完全平方数的有多少个. 一开始就想进去里典型的dp世界观里, ...

  3. SGU 200 Cracking RSA (高斯消元)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出m个整理,因子全部为前t个素数.问有多少 ...

  4. SGU 200. Cracking RSA (高斯消元求自由变元个数)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=200 200. Cracking RSA time limit per test: ...

  5. HDU2449 Gauss Elimination 高斯消元 高精度 (C++ AC代码)

    原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程 ...

  6. SGU 260.Puzzle (异或高斯消元)

    题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...

  7. ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...

  8. SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax

    275. To xor or not to xor   The sequence of non-negative integers A1, A2, ..., AN is given. You are ...

  9. SGU 275 To xor or not to xor (高斯消元)

    题目链接 题意:有n个数,范围是[0, 10^18],n最大为100,找出若干个数使它们异或的值最大并输出这个最大值. 分析: 一道高斯消元的好题/ 我们把每个数用二进制表示,要使得最后的异或值最大, ...

随机推荐

  1. Android应用开发-小巫CSDN博客clientJsoup篇

    Android应用开发-小巫CSDN博客clientJsoup篇 距上一篇博客已经过去了两个星期,小巫也认为很抱歉,由于在忙着做另外一个项目,差点儿抽不出空来,这不小巫会把剩下的博文全部在国庆补上.本 ...

  2. Asp.Net2.0下C#环境 Login控件实现用户登录

    原文:Asp.Net2.0下C#环境 Login控件实现用户登录 一.前台显示效果 二.前台代码             <asp:Login ID="Login1" run ...

  3. Python3.2官方文档-日志和弱引用

    8.5 日志 Logging模块提供了一些功能全面和灵活的日志系统.最简单的形式就是把日志信息发送到一个文件或sys.stderr; import logging logging.debug('Deb ...

  4. java该HashTable,HashMap和HashSet

    同一时候我们也对HashSet和HashMap的核心方法hashcode进行了具体解释,见<探索equals()和hashCode()方法>. 万事俱备,那么以下我们就对基于hash算法的 ...

  5. ZOJ 2110 Tempter of the Bone(条件迷宫DFS,HDU1010)

    题意  一仅仅狗要逃离迷宫  能够往上下左右4个方向走  每走一步耗时1s  每一个格子仅仅能走一次且迷宫的门仅仅在t时刻打开一次  问狗是否有可能逃离这个迷宫 直接DFS  直道找到满足条件的路径 ...

  6. poj 2586 Y2K Accounting Bug (贪心)

    Y2K Accounting Bug Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8678   Accepted: 428 ...

  7. 自己写shell命令pwd

    思维:(1)得到"."的i节点号,叫n(使用stat) (2)chdir ..(使用chdir) (3)找到inode号为n的节点,得到其文件名称. 反复上述操作直到当前文件夹&q ...

  8. 冷市攻略:Listo 教你 25 今天的社会 Swift 语言 - 02 Swift Tour

    import Foundation //******************************************************************************** ...

  9. 修改字符串中特定的内容,用于OpenRecovery Script

    下面的是实例内容 目标是把OpenRecovery Script输入的内容进行修改 当有下面的输入:(作用是安装/emmc目录下面的update-signed.zip 刷机包) install /em ...

  10. UVA434 - Matty&#39;s Blocks

    option=com_onlinejudge&Itemid=8&page=show_problem&category=457&problem=375&mosms ...