在一个类中,如果类没有指针成员,一切方便,因为默认合成的析构函数会自动处理所有的内存。但是如果一个类带了指针成员,那么需要我们自己来写一个析构函数来管理内存。在<<c++ primer>> 中写到,如果一个类需要我们自己写析构函数,那么这个类,也会需要我们自己写拷贝构造函数和拷贝赋值函数。

析构函数:

我们这里定义一个类HasPtr,这个类中包含一个int 类型的指针。然后定义一个析构函数,这个函数打印一句话。

HasPtr.h 类的头文件

 #pragma once
#ifndef __HASPTR__
#define __HASPTR__ class HasPtr
{
public:
HasPtr(int i,int *p);
//HasPtr& operator=(HasPtr&);
//HasPtr(const HasPtr&);
~HasPtr();
int get_ptr_value();
void set_ptr_value(int *p);
int get_val();
void set_val(int v);
private:
int val;
int *ptr;
}; #endif // !__HASPTR__

HasPtr.cpp 类的实现

 #include "stdafx.h"

 #include <iostream>
#include "HasPtr.h" using namespace std; HasPtr::HasPtr(int i, int *p)
{
val = i;
ptr = p;
} int HasPtr::get_ptr_value()
{
return *ptr;
} void HasPtr::set_ptr_value(int *p)
{
ptr = p;
} int HasPtr::get_val()
{
return val;
} void HasPtr::set_val(int v)
{
val = v;
} HasPtr::~HasPtr()
{
cout << "destructor of HasPtr " << endl;
}

ClassWithPointer 类,包含main入口,HasPtr在stack上。

 // ClassWithPointer.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include "HasPtr.h"
using namespace std; int main()
{
int temp = ;
HasPtr ptr(,&temp);
cout << ptr.get_ptr_value() << endl;
cout << ptr.get_val() << endl;
system("PAUSE");
system("PAUSE");
return ;
}

执行该入口方法,发现最后还是打印了析构函数这句话,OK,在main 方法中,stack上定义了一个HasPtr,在main方法退出前,析构函数自动调用了。

如果将HasPtr改为动态对象,也就是放在堆上呢?

ClassWithPointer 类,包含main入口,HasPtr在heap上。

 // ClassWithPointer.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include "HasPtr.h"
using namespace std; int main()
{
int temp = ;
//HasPtr ptr(2,&temp);
HasPtr *ptr = new HasPtr(,&temp);
cout << ptr->get_ptr_value() << endl;
cout << ptr->get_val() << endl;
system("PAUSE");
return ;
}

执行一下,发现析构函数没有调用。OK,我们在return 0前面添加一个delete ptr; 析构函数执行了。

所以,这里有两个结论:

  1. 当一个对象在stack 上时,析构函数自动调用。
  2. 当一个对象在heap上时,需要调用delete 语句,析构函数才会被执行。

现在在析构函数中调用delete 语句来删除指针成员。

头文件不变,HasPtr.cpp 文件代码如下:

 #include "stdafx.h"

 #include <iostream>
#include "HasPtr.h" using namespace std; HasPtr::HasPtr(int i, int *p)
{
val = i;
ptr = p;
} int HasPtr::get_ptr_value()
{
return *ptr;
} void HasPtr::set_ptr_value(int *p)
{
ptr = p;
} int HasPtr::get_val()
{
return val;
} void HasPtr::set_val(int v)
{
val = v;
} HasPtr::~HasPtr()
{
cout << "destructor of HasPtr " << endl;
delete ptr;
}

ClassWithPointer 代码如下:

 // ClassWithPointer.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include "HasPtr.h"
using namespace std; int main()
{
int temp = ;
HasPtr ptr(,&temp);
cout << ptr.get_ptr_value() << endl;
cout << ptr.get_val() << endl;
system("PAUSE");
return ;
}

执行一下,正常打印结束后,抛出错误:

这里说明delete 不能删除stack 上的指针值。

现在在ClassWithPointer传入一个动态指针来测试一下。

 // ClassWithPointer.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include "HasPtr.h"
using namespace std; int main()
{
int *temp = new int();
HasPtr ptr(,temp);
cout << ptr.get_ptr_value() << endl;
cout << ptr.get_val() << endl;
system("PAUSE");
return ;
}

执行后析构函数正常运行。所以这里有两个结论:

  1. delete 语句不能删除stack 上的指针值。
  2. delete 语句只能删除heap上的指针值,也就是new 出来的对象。

默认拷贝构造函数和默认赋值操作:

这里我们调用默认的构造函数和默认的赋值操作,看看会出现什么,为了方便查看,我在析构函数中打印了当前对象的地址,以及在main方法中打印了对象地址,这样就可以看到哪个对象调用了析构函数:

HasPtr.cpp 代码如下:

 #include "stdafx.h"

 #include <iostream>
#include "HasPtr.h" using namespace std; HasPtr::HasPtr(int i, int *p)
{
val = i;
ptr = p;
} int HasPtr::get_ptr_value()
{
return *ptr;
} void HasPtr::set_ptr_value(int *p)
{
ptr = p;
} int HasPtr::get_val()
{
return val;
} void HasPtr::set_val(int v)
{
val = v;
} HasPtr::~HasPtr()
{
cout << "destructor of HasPtr " << this << endl;
delete ptr;
}

ClassWithPointer 代码如下:

 // ClassWithPointer.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include "HasPtr.h"
using namespace std; int main()
{
int *temp = new int();
HasPtr ptr(,temp);
cout << "ptr-------------->" << &ptr << endl;
cout << ptr.get_ptr_value() << endl;
cout << ptr.get_val() << endl; HasPtr ptr2(ptr);
cout << "ptr2-------------->" << &ptr2 << endl;
cout << ptr2.get_ptr_value() << endl;
cout << ptr2.get_val() << endl; HasPtr ptr3 = ptr;
cout << "ptr3-------------->" << &ptr3 << endl;
cout << ptr3.get_ptr_value() << endl;
cout << ptr3.get_val() << endl; system("PAUSE");
return ;
}

运行结果如下,最后还是报错了:

其实程序运行到第二个析构函数时,报错了。报错原因是,ptr 其实已经是pending指针了,因为这个ptr 指针所指向的地址已经被delete了。

不过我们这里最起码可以知道默认的拷贝构造函数和赋值操作,也是会直接复制指针值的,不是指针所指向的值。是指针变量的值,也就是地址。

所以这里引申出来的问题是:如何管理对象中指针成员的内存? 这个是一个核心问题。

上面的例子,就是默认的方式,但是管理失败了,因为析构函数到最后会删除pending 指针,导致异常发生。

智能指针:

引入一个类U_Ptr,用来管理我们需要在业务对象中需要的指针变量,假设为int *p。头文件如下:

 #pragma once
#ifndef __UPTR__
#define __UPTR__
#include "HasPtr.h"
#include <iostream> using namespace std;
class U_Ptr
{
friend class HasPtr;
int *ip;
size_t use; U_Ptr(int *p):ip(p),use() {}
~U_Ptr()
{
cout << "destruction:"<< *ip << endl;
delete ip;
}
};
#endif // !__UPTR__

现在我们的业务对象还是HasPtr。头文件如下:

 #pragma once
#ifndef __HASPTR__
#define __HASPTR__
#include "U_Ptr.h"
class HasPtr
{
public:
HasPtr(int *p, int i):ptr(new U_Ptr(p)),val(i){} HasPtr(const HasPtr &orgi) :ptr(orgi.ptr), val(orgi.val)
{
++ptr->use;
cout << "coming into copy construction:" << ptr->use << endl;
} HasPtr& operator=(const HasPtr &rhs); ~HasPtr(); int get_ptr_value() const;
int get_int() const;
void set_ptr(int *p);
void set_int(int i);
private:
U_Ptr *ptr;
int val;
}; #endif // !__HASPTR__

HasPtr.cpp 实现如下:

 #include "stdafx.h"
#include "HasPtr.h"
#include <iostream> using namespace std; HasPtr& HasPtr::operator=(const HasPtr &rhs)
{
++rhs.ptr->use;
if (--ptr->use == )
{
delete ptr;
}
ptr = rhs.ptr;
val = rhs.val;
return *this;
} HasPtr::~HasPtr()
{
cout << "destruction:" << ptr->use << endl;
if (--ptr->use == )
{
delete ptr;
}
} int HasPtr::get_ptr_value() const
{
return *ptr->ip;
}
int HasPtr::get_int() const
{
return val;
}
void HasPtr::set_ptr(int *p)
{
ptr->ip = p;
}
void HasPtr::set_int(int i)
{
val = i;
}

测试类如下:

 // SmartPointer.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include "HasPtr.h"
#include <iostream> using namespace std; int main()
{
int *temp = new int();
HasPtr ptr(temp,);
cout << "ptr------------>" << endl;
cout << ptr.get_ptr_value() << endl;
cout << ptr.get_int() << endl;
HasPtr ptr2(ptr);
cout << "ptr2------------>" << endl;
cout << ptr2.get_ptr_value() << endl;
cout << ptr2.get_int() << endl;
system("PAUSE");
return ;
}

我们把U_Ptr 叫做智能指针,用于帮我们管理需要的指针成员。我们的业务对象HasPtr对象包含一个智能指针,这个指针在HasPtr 对象创建时创建,智能指针的use 变量用来记录业务对象HasPtr对象被复制了多少次,也就是说,有多少个相同的指针指向了ptr所指向的地方。如果要记录HasPtr对象一共有多少个一样的,那么就需要在拷贝构造函数和赋值操作处进行对use变量加一操作,在析构函数处进行减一操作。当减到0时,删除指针。

C++ 带有指针成员的类处理方式的更多相关文章

  1. 15.含有指针成员的类的拷贝[ClassCopyConstructorWithPointerMember]

    [题目] 下面是一个数组类的声明与实现.请分析这个类有什么问题,并针对存在的问题提出几种解决方案.  C++ Code  123456789101112131415161718192021222324 ...

  2. C++对象的复制——具有指针成员的类的对象的复制

    //smartvessel@gmail.com class Table{ Name * p; size_t sz; publish: Table(size_t s = 15){p = new Name ...

  3. C++ Primer 学习笔记_57_类和数据抽象 --管理指针成员

    复印控制 --管理指针成员 引言: 包括指针的类须要特别注意复制控制.原因是复制指针时.一个带指针成员的指针类 class HasPtr { public: HasPtr(int *p,int i): ...

  4. c/c++ 类成员变量,成员函数的存储方式,以及this指针在c++中的作用

    c/c++ 类成员变量,成员函数的存储方式,以及this指针在c++中的作用 c++不会像上图那样为每一个对象的成员变量和成员函数开辟内存空间, 而是像下图那样,只为每一个对象的成员变量开辟空间.成员 ...

  5. C++ Primer 有感(管理类的指针成员)

    C++类的指针成员与其他成员有所不同,指针成员指向一个内存地址,该地址的内存需要我没管理. 我现在分析一下为什么要管理指针成员. 有如下Student类,Student.h如下: [cpp] view ...

  6. !带有指针的类和struct赋值的本质 - host to device

    //这个变量必须在while循环外面 //原因是当将loadModels[modelNum].g_3DModel[0]赋值给新建类后 //里面的数值拷贝过去了,而里头的指针只给了地址 //所以如果这个 ...

  7. 【c++】类管理指针成员

    c++编程提倡使用标准库,一个原因是标准库大胆减少对指针的使用.但是许多程序是离不开指针的.包含指针的类需要特别注意复制控制,原因是复制指针时只复制指针中的地址,而不复制指针所指向的对象.这样当把一个 ...

  8. YTU 2636: B3 指向基类的指针访问派生类的成员函数

    2636: B3 指向基类的指针访问派生类的成员函数 时间限制: 1 Sec  内存限制: 128 MB 提交: 433  解决: 141 题目描述 领导类(Leader)和工程师类(Engineer ...

  9. C++ 类 & 对象-类成员函数-类访问修饰符-C++ 友元函数-构造函数 & 析构函数-C++ 拷贝构造函数

    C++ 类成员函数 成员函数可以定义在类定义内部,或者单独使用范围解析运算符 :: 来定义. 需要强调一点,在 :: 运算符之前必须使用类名.调用成员函数是在对象上使用点运算符(.),这样它就能操作与 ...

随机推荐

  1. C++中的RAII技法

    Resource Acquisition Is Initialization or RAII, is a C++ programming technique which binds the life ...

  2. Java的IO操作中有面向字节(Byte)和面向字符(Character)两种方式

    解析:Java的IO操作中有面向字节(Byte)和面向字符(Character)两种方式.面向字节的操作为以8位为单位对二进制的数据进行操作,对数据不进行转换,这些类都是InputStream和Out ...

  3. css基础详解(1)

    css讲解 声明 1:这里的文字都是我从我自己csdn账号拷贝过来,是本人学习总结的结晶,所以请尊重本作品.2:如要要转载本文章,则要说明文字的出处.3:如有哪里不对或者哪里还不够完善欢迎大家指出. ...

  4. POJ2185(KMP)

    Milking Grid Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7896   Accepted: 3408 Desc ...

  5. 简学Python第二章__巧学数据结构文件操作

    #cnblogs_post_body h2 { background: linear-gradient(to bottom, #18c0ff 0%,#0c7eff 100%); color: #fff ...

  6. 【前端】:css

    前言: 关于前端的第二篇博客,会写关于css的,内容比较基础.写完这篇博客,会做一个类似美乐乐家具的界面.good luck to me~ 一.css-引用样式 标签上设置style属性: <b ...

  7. shell变量数学运算

    shell变量数学运算 #!/bin/sh # 本脚本说明shell脚本中变量运算的用法 # 错误的用法var=1var=$var+1echo $var 输出:1+1 # 第一种用法,letvar=1 ...

  8. UICollectionView 很简单的写个瀑布流

    你项目中要用到它吗? 可能会在你的项目中用到这玩意,最近也是要用就简单的写了一个 Demo.没多少代码,就不放Git了,下面会详细点的说说代码的,要还有什么问题的小伙伴可以直接Q我,也可以把Demo发 ...

  9. Apache常见功能实战详解

    Apache 是一款使用量排名第一的 web 服务器,LAMP 中的 A 指的就是它.由于其开源.稳定.安全等特性而被广泛使用.前边的一篇文章中已经记录过如何搭建 LAMP 架构,搭建仅是第一步,其中 ...

  10. (五)Lua脚本语言入门

    ---恢复内容开始--- 写完这篇Lua脚本语言入门,自己就要尝试去用Lua脚本语言写esp8266了,,自己现在挺心急的,因为朋友使用esp8266本来说自己帮忙写好程序的,但是用的单片机不一样自己 ...