写的MPI程序需要用到并行IO来操作文件,但是搜遍了度娘都没有找到多少关于并行IO函数的使用方法。最后在知网搜到了一些有用的论文,看了一下,感觉豁然开朗。

  MPI-1对文件的操作是使用绑定语言的函数调用来进行的,通常采用的是串行IO的读写方式,一般情况下是用一个主进程打开文件和读取数据,然后分发给其他进程来处理,这种串行IO数据的通信量很大、效率较低。MPI-2实现了并行IO,允许多个进程同时对文件进行操作,从而避免了文件数据在不同进程间的传送,对于需要密集文件操作的程序而言,简直是一大福祉!

  并行IO可分为三种方法:指定显式偏移量、独立文件指针和共享文件指针,每种方式又可分为阻塞和非阻塞两种情况。

  下面以读写一个二进制文件数组为例,阐述这三种方法的函数调用。下面的三个mian函数分别对应三种方法,读取“data"二进制文件数组(文件内容:行数、列数、数组元素),读取完整后由进程0输出其读取的数据以验证读取是否正确,最后所有进程将其读取的数据写入一个叫“data2"的二进制文件。怎么来查看二进制文件的内容以验证是否读写正确呢,或者说二进制文件和可读内容的文本文件之间怎么转换呢?下面也给出简单代码。

  

  code:

 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include"mpi.h" #define BLOCK_LOW(rank,size,n) ((rank)*(n)/(size))
#define BLOCK_HIGH(rank,size,n) (BLOCK_LOW((rank)+1,size,n)-1)
#define BLOCK_SIZE(rank,size,n) (BLOCK_HIGH(rank,size,n)-BLOCK_LOW(rank,size,n)+1) //并行IO:指定显式偏移的文件操作
int main(int argc, char *argv[])
{
int size,rank,i;
int n,m;
float *array;
MPI_File fh;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size); MPI_File_open(MPI_COMM_WORLD,"data",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
MPI_File_read_at_all(fh,,&n,,MPI_INT,&status); //从偏移量0处读取
MPI_File_read_at_all(fh,sizeof(int),&m,,MPI_INT,&status); //从偏移量1个int处读取
array=(float *)malloc(BLOCK_SIZE(rank,size,n)*m*sizeof(float));
MPI_File_read_at_all(fh,*sizeof(int)+BLOCK_LOW(rank,size,n)*m*sizeof(float),array,BLOCK_SIZE(rank,size,n)*m,MPI_FLOAT,&status);
MPI_File_close(&fh); if(rank==){
printf("rank=%d: %d %d\n",rank,n,m);
for(i=;i<BLOCK_SIZE(rank,size,n)*m;i++){
printf("% .0f",array[i]);
if((i+)%m==) putchar('\n');
}
} MPI_File_open(MPI_COMM_WORLD,"data2",MPI_MODE_CREATE|MPI_MODE_WRONLY,MPI_INFO_NULL,&fh);
MPI_File_write_at_all(fh,,&n,,MPI_INT,&status);
MPI_File_write_at_all(fh,sizeof(int),&m,,MPI_INT,&status);
MPI_File_write_at_all(fh,*sizeof(int)+BLOCK_LOW(rank,size,n)*m*sizeof(float),array,BLOCK_SIZE(rank,size,n)*m,MPI_FLOAT,&status);
MPI_File_close(&fh); MPI_Finalize();
return ;
} /*
//并行IO:独立文件指针
int main(int argc,char *argv[])
{
int size,rank,i;
int n,m;
float *array;
MPI_File fh;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size); MPI_File_open(MPI_COMM_WORLD,"data",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
MPI_File_set_view(fh,0,MPI_INT,MPI_INT,"internal",MPI_INFO_NULL); //设置绝对偏移量为0
MPI_File_read_all(fh,&n,1,MPI_INT,&status); //读取后偏移量自动加1
MPI_File_read_all(fh,&m,1,MPI_INT,&status);
array=(float *)malloc(BLOCK_SIZE(rank,size,n)*m*sizeof(float));
MPI_File_set_view(fh,2*sizeof(int)+BLOCK_LOW(rank,size,n)*m*sizeof(float),MPI_FLOAT,MPI_FLOAT,"internal",MPI_INFO_NULL);//重置偏移量
MPI_File_read_all(fh,array,BLOCK_SIZE(rank,size,n)*m,MPI_INT,&status);
MPI_File_close(&fh); if(rank==0){
printf("rank=%d: %d %d\n",rank,n,m);
for(i=0;i<BLOCK_SIZE(rank,size,n)*m;i++){
printf("% .0f",array[i]);
if((i+1)%m==0) putchar('\n');
}
} MPI_File_open(MPI_COMM_WORLD,"data2",MPI_MODE_CREATE|MPI_MODE_WRONLY,MPI_INFO_NULL,&fh);
MPI_File_set_view(fh,0,MPI_INT,MPI_INT,"internal",MPI_INFO_NULL);
MPI_File_write_all(fh,&n,1,MPI_INT,&status);
MPI_File_write_all(fh,&m,1,MPI_INT,&status);
MPI_File_set_view(fh,2*sizeof(int)+BLOCK_LOW(rank,size,n)*m*sizeof(float),MPI_FLOAT,MPI_FLOAT,"internal",MPI_INFO_NULL);
MPI_File_write_all(fh,array,BLOCK_SIZE(rank,size,n)*m,MPI_FLOAT,&status);
MPI_File_close(&fh); MPI_Finalize();
}
*/ /*
//并行IO:共享文件指针
int main(int argc,char *argv[])
{
int size,rank,i;
int n,m;
float *array;
MPI_File fh;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size); MPI_File_open(MPI_COMM_WORLD,"data",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
MPI_File_read_at_all(fh,0,&n,1,MPI_INT,&status); //指定显式偏移的读取
MPI_File_read_at_all(fh,sizeof(int),&m,1,MPI_INT,&status);
array=(float *)malloc(BLOCK_SIZE(rank,size,n)*m*sizeof(float));
MPI_File_seek_shared(fh,2*sizeof(int),MPI_SEEK_SET); //共享文件指针,偏移量是2个int
MPI_File_read_ordered(fh,array,BLOCK_SIZE(rank,size,n)*m,MPI_FLOAT,&status); //按序读取
MPI_File_close(&fh); if(rank==0){
printf("rank=%d: %d %d\n",rank,n,m);
for(i=0;i<BLOCK_SIZE(rank,size,n)*m;i++){
printf("% .0f",array[i]);
if((i+1)%m==0) putchar('\n');
}
} MPI_File_open(MPI_COMM_WORLD,"data2",MPI_MODE_CREATE|MPI_MODE_WRONLY,MPI_INFO_NULL,&fh);
MPI_File_write_at_all(fh,0,&n,1,MPI_INT,&status); //指定显式偏移的写入
MPI_File_write_at_all(fh,sizeof(int),&m,1,MPI_INT,&status);
MPI_File_seek_shared(fh,2*sizeof(int),MPI_SEEK_SET); //共享文件指针,偏移量是2个int
MPI_File_write_ordered(fh,array,BLOCK_SIZE(rank,size,n)*m,MPI_FLOAT,&status); //按序写入
MPI_File_close(&fh); MPI_Finalize();
}
*/
 //将二进制数组文件转换为文本文件。要求二进制文件的内容:行数 列数 数组元素
#include <stdio.h>
#include <stdlib.h> typedef float type; int main()
{
int i,j;
int n,m;
type **array;
FILE *fp;
fp=fopen("data","rb");
fread(&n,sizeof(int),,fp);
fread(&m,sizeof(int),,fp); array=(type **)malloc(n*sizeof(type *));
*array=(type *)malloc(n*m*sizeof(type));
for(i=;i<n;i++) array[i]=array[i-]+m; fread(&array[][],n*m*sizeof(type),,fp); //注意不能是地址 array
fclose(fp); fp=fopen("data.txt","w");
fprintf(fp," %d %d\n",n,m);
for(i=;i<n;i++){
for(j=;j<m;j++)
fprintf(fp,"% f ",array[i][j]);
putc('\n',fp);
}
fprintf(stdout,"Successfully!\n");
}
 //将数组文本文件转换为二进制文件。要求文本文件的内容:行数 列数 数组元素
#include <stdio.h>
#include <stdlib.h> typedef float type; int main()
{
int i,j;
int n,m;
type **array;
FILE *fp;
fp=fopen("data.txt","r");
fscanf(fp,"%d",&n);
fscanf(fp,"%d",&m); array=(type **)malloc(n*sizeof(type *));
*array=(type *)malloc(n*m*sizeof(type));
for(i=;i<n;i++) array[i]=array[i-]+m; for(i=;i<n;i++)
for(j=;j<m;j++)
fscanf(fp,"%f",&array[i][j]);
fclose(fp); fp=fopen("data","wb");
fwrite(&n,sizeof(int),,fp);
fwrite(&m,sizeof(int),,fp);
fwrite(&array[][],n*m*sizeof(type),,fp); //注意不能是地址 &array
fclose(fp);
fprintf(stdout,"Successfully!\n");
}

  一个示例的文本文件数组data.txt:

  8 8
  1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
  2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
  3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
  4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000 4.000000
  5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
  6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000
  7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000
  8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000

MPI-2 并行IO的使用方法的更多相关文章

  1. linux下测试磁盘的读写IO速度-简易方法

    linux下测试磁盘的读写IO速度-简易方法 参考资料:https://blog.csdn.net/zqtsx/article/details/25487185 一:使用hdparm命令 这是一个是用 ...

  2. Java.io下的方法是对磁盘上的文件进行磁盘操作

    File类(java.io.*)可表示一个文件,也有可能是一个目录(在JAVA中文件和目录都属于这个类中,而且区分不是非常的明显). Java.io下的方法是对磁盘上的文件进行磁盘操作,但是无法读取文 ...

  3. 【翻译自mos文章】当并行事务恢复进程在执行时,禁用并行事务恢复的方法

    当并行事务恢复进程在执行时,禁用并行事务恢复的方法 How to Disable Parallel Transaction Recovery When Parallel Txn Recovery is ...

  4. Java.io.ObjectOutputStream.writeObject()方法实例

    java.io.ObjectOutputStream.writeObject(Object obj) 方法将指定对象写入ObjectOutputStream.该对象的类,类的签名,以及类及其所有超类型 ...

  5. Windows性能监视器之CPU、硬盘、IO等监控方法详解-摘自网络

    一般操作系统性能主要涉及到的问题主要有:处理器使用情况.内存占有量.磁盘I/0操作以及网络流量等. 查看Windows性能情况,大部分情况下是通过 “Windows任务管理器”,可以通过在 ”命令行” ...

  6. 最新spring官网(spring.io)下载方法

    这里介绍的是用于WEB开发的spring-frame框架的下载方法. 如果想下载其他的spring产品,直接进入http://projects.spring.io,选择自己要的即可.下载方法同下. 要 ...

  7. 【MPI】并行求和

    比较简单的并行求和 读入还是串行的 而且无法处理线程数无法整除数据总长度的情况 主要用到了MPI_Bcast MPI_Scatter MPI_Reduce typedef long long __in ...

  8. JAVA IO中read()方法的返回值

    read()方法的作用是从输入流读取数据的下一个字节,返回的字节的值是一个0~255之间的整数.到达流的末尾返回-1. 刚开始我以为这个返回值表示的是所读取的数据的长度,可是之后在一个示例程序中发现这 ...

  9. 定位IO瓶颈的方法,iowait低,IO就没有到瓶颈?

    通过分析mpstat的iowait和iostat的util%,判断IO瓶颈 IO瓶颈往往是我们可能会忽略的地方(我们常会看top.free.netstat等等,但经常会忽略IO的负载情况),今天给大家 ...

随机推荐

  1. Java程序员的日常—— Arrays工具类的使用

    这个类在日常的开发中,还是非常常用的.今天就总结一下Arrays工具类的常用方法.最常用的就是asList,sort,toStream,equals,copyOf了.另外可以深入学习下Arrays的排 ...

  2. 安装过程错误[INS-30131]

    问题:Oracle Database 安装过程错误[INS-30131]   原因:安装用户没有对临时文件夹的读写权限   解决方案:   1.以管理员身份运行cmd.exe 2.输入命令(需启动Se ...

  3. 【译】Unity3D Shader 新手教程(6/6) —— 更好的卡通Shader

    本文为翻译,附上原文链接. 转载请注明出处--polobymulberry-博客园. 动机 如果你想了解以下几件事,我建议你阅读以下这篇教程: 想知道如何写一个multipass的toon shade ...

  4. 计算机程序的思维逻辑 (53) - 剖析Collections - 算法

    之前几节介绍了各种具体容器类和抽象容器类,上节我们提到,Java中有一个类Collections,提供了很多针对容器接口的通用功能,这些功能都是以静态方法的方式提供的. 都有哪些功能呢?大概可以分为两 ...

  5. C#泛型方法解析

    C#2.0引入了泛型这个特性,由于泛型的引入,在一定程度上极大的增强了C#的生命力,可以完成C#1.0时需要编写复杂代码才可以完成的一些功能.但是作为开发者,对于泛型可谓是又爱又恨,爱的是其强大的功能 ...

  6. JavaScript : 零基础打造自己的类库

    写作不易,转载请注明出处,谢谢. 文章类别:Javascript基础(面向初学者) 前言 在之前的章节中,我们已经不依赖jQuery,单纯地用JavaScript封装了很多方法,这个时候,你一定会想, ...

  7. ASP.NET Core 中文文档 第四章 MVC(2.2)模型验证

    原文:Model Validation 作者:Rachel Appel 翻译:娄宇(Lyrics) 校对:孟帅洋(书缘) 在这篇文章中: 章节: 介绍模型验证 验证 Attribute 模型状态 处理 ...

  8. android 模拟2048

    利用节日休息时间在ANDROID上进行学习并模拟2048游戏. 效果如下图: 制作思路: 1.画出2048游戏主界面,根据手机屏幕宽高度进行计算并画出每个方块的大小. @Override protec ...

  9. [WinForm] DataGridView 绑定 DT && ComboBox 列绑定 Dict

    一  需求介绍 一般像枚举类型的数据,我们在数据库里存储着诸如(1.2.3.4-)或者("001"."002"."003"-)此类,但是界面 ...

  10. SIMLock锁卡功能解析

    一.锁卡背景介绍 锁卡即SIMLock,当手机开机启动或者插入SIM卡时,手机modem侧预置在NV项中的配置信息会与SIM卡中的信息做比对,检测是否匹配.若匹配,则SIM卡可以正常使用.若不匹配,则 ...