HDU 5572 An Easy Physics Problem (计算几何+对称点模板)
HDU 5572 An Easy Physics Problem (计算几何)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572
Description
On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volume can be ignored.
Currently the ball stands still at point A, then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.
We're just curious about whether the ball will pass point B after some time.
Input
First line contains an integer T, which indicates the number of test cases.
Every test case contains three lines.
The first line contains three integers Ox, Oy and r, indicating the center of cylinder is (Ox,Oy) and its radius is r.
The second line contains four integers Ax, Ay, Vx and Vy, indicating the coordinate of A is (Ax,Ay) and the initial direction vector is (Vx,Vy).
The last line contains two integers Bx and By, indicating the coordinate of point B is (Bx,By).
⋅ 1 ≤ T ≤ 100.
⋅ |Ox|,|Oy|≤ 1000.
⋅ 1 ≤ r ≤ 100.
⋅ |Ax|,|Ay|,|Bx|,|By|≤ 1000.
⋅ |Vx|,|Vy|≤ 1000.
⋅ Vx≠0 or Vy≠0.
⋅ both A and B are outside of the cylinder and they are not at same position.
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1. y is "Yes" if the ball will pass point B after some time, otherwise y is "No".
Sample Input
2
0 0 1
2 2 0 1
-1 -1
0 0 1
-1 2 1 -1
1 2
Sample Output
Case #1: No
Case #2: Yes
题意:
在平面内给你一个固定的实心圆,然后从a点有一个球,给你运动方向问能否撞击到b点。
题解:
首先是能不能够撞击到大的圆。这个判断可以联立运动方程和圆的方程,产生一个一元二次方程,无解或者解小于0则是不撞击。如不能撞击到那么就判断直线运动能否撞击到b点即可。如果能撞击到,判断撞击之前能否撞到b点。如不能,将a点关于圆心与撞击点连成的直线的对称点求出,这样就可以再次判断。注意:一定不要通过普适方程求解,使用向量求解对称点,否则Wa到世界末日。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long double ld;
const ld eps = 1e-10;
ld r;
int sgn(ld x){
if (fabs(x) < eps)
return 0;
return x > 0?1:-1;
}
struct Point{
ld x,y;
Point (double _x = 0, double _y = 0):x(_x), y(_y) {}
bool operator < (const Point &b) const {
return (sgn (x-b.x) == 0 ? sgn (y-b.y) < 0 : x < b.x);
}
Point operator + (const Point &b) const {
return Point (x+b.x, y+b.y);
}
Point operator - (const Point &b) const {
return Point (x-b.x, y-b.y);
}
Point operator * (double a) {
return Point (x*a, y*a);
}
Point operator / (double a) {
return Point (x/a, y/a);
}
double len2 () {//返回长度的平方
return x*x + y*y;
}
double len () {//返回长度
return sqrt (len2 ());
}
Point change_len (double r) {//转化为长度为r的向量
double l = len ();
if (sgn (l) == 0) return *this;//零向量返回自身
r /= l;
return Point (x*r, y*r);
}
};
Point a,b,c,da;
bool rig(ld x,ld y,ld dx,ld dy,ld px,ld py)
{
ld t;
if (sgn(dx) == 0){
t = (py-y)/dy ;
if (sgn(x+t*dx-px) == 0 && t >= 0)
return true;
return false;
}else {
t = (px-x)/dx;
if (sgn(y+t*dy-py) == 0 && t >= 0)
return true;
return false;
}
}
ld dot(const Point &a,const Point &b){
return a.x*b.x+a.y*b.y;
}
Point projection (Point p, Point s,Point e) {
return s + (((e-s) * dot (e-s, p-s)) / (e-s).len2() );
}
Point dc(Point p,Point s,Point e)
{
Point q = projection(p,s,e);
return Point (2*q.x-p.x, 2*q.y-p.y);
}
bool solve()
{
ld A,B,C;
A = da.x*da.x + da.y*da.y;
B = 2.0*(da.x*(a.x-c.x) + da.y*(a.y-c.y)) ;
C = (a.x-c.x)*(a.x-c.x) + (a.y-c.y)*(a.y-c.y) -r*r;
ld dlt = B*B - 4.0*A*C;
if (sgn(dlt) <= 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}else {
ld t = (-B-sqrt(dlt))/A/2.0;
if (sgn(t) < 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}
Point hit;
hit.x = a.x+t*da.x;
hit.y = a.y+t*da.y;
if (rig(a.x,a.y,da.x,da.y,b.x,b.y))
if (b.x >= min(hit.x,a.x) && b.x <= max(hit.x,a.x) && b.y >= min(a.y,hit.y) && b.y <= max(a.y,hit.y))
return true;
Point bb = dc(a,hit,c);
return rig(hit.x,hit.y,bb.x-hit.x,bb.y-hit.y,b.x,b.y);
}
}
int main()
{
int t;
scanf("%d",&t);
for (int _t = 1; _t <= t; _t++){
cin>>c.x>>c.y>>r;
cin>>a.x>>a.y>>da.x>>da.y;
cin>>b.x>>b.y;
printf("Case #%d: ",_t);
if (solve())
printf("Yes\n");
else printf("No\n");
}
return 0;
}
HDU 5572 An Easy Physics Problem (计算几何+对称点模板)的更多相关文章
- hdu 5572 An Easy Physics Problem 圆+直线
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- HDU 5572 An Easy Physics Problem【计算几何】
计算几何的题做的真是少之又少. 之前wa以为是精度问题,后来发现是情况没有考虑全... 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意: ...
- HDU - 5572 An Easy Physics Problem (计算几何模板)
[题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...
- 【HDU 5572 An Easy Physics Problem】计算几何基础
2015上海区域赛现场赛第5题. 题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意:在平面上,已知圆(O, R),点B.A(均在圆外),向量 ...
- 2015 ACM-ICPC 亚洲区上海站 A - An Easy Physics Problem (计算几何)
题目链接:HDU 5572 Problem Description On an infinite smooth table, there's a big round fixed cylinder an ...
- HDU 5572--An Easy Physics Problem(射线和圆的交点)
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- ACM 2015年上海区域赛A题 HDU 5572An Easy Physics Problem
题意: 光滑平面,一个刚性小球,一个固定的刚性圆柱体 ,给定圆柱体圆心坐标,半径 ,小球起点坐标,起始运动方向(向量) ,终点坐标 ,问能否到达终点,小球运动中如果碰到圆柱体会反射. 学到了向量模板, ...
- HDU 4974 A simple water problem(贪心)
HDU 4974 A simple water problem pid=4974" target="_blank" style="">题目链接 ...
- hdu 1040 As Easy As A+B
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- IOS开发的内存管理
关于IOS开发的内存管理的文章已经很多了,因此系统的知识点就不写了,这里我写点平时工作遇到的疑问以及解答做个总结吧,相信也会有人遇到相同的疑问呢,欢迎学习IOS的朋友请加ios技术交流群:190956 ...
- IE11仿真文档模式默认IE5 IE7的调整办法
<meta http-equiv="X-UA-Compatible" content="IE=edge">
- C# ASP.net 入门之简单通讯录
简单通讯录功能虽然简单,却包括了制作一个网站的基本功能!各个模块可以作为新手入门的参考. 简单通讯录实现功能:1.登录 2.注册 3.后台管理 4.前台登录显示 5.创建联系人 6.密码修改 代码下载 ...
- kubernetes源码阅读及编译
kubernetes源码阅读 工欲善其事,必先利其器.在阅读kubernetes源码时,我也先后使用过多个IDE,最终还是停留在IDEA上. 我惯用的是pycharm(IDEA的python IDE版 ...
- Address already in use: JVM_Bind(端口冲突)
1.错误描述 2011-7-20 11:05:18 org.apache.catalina.core.StandardServer await严重: StandardServer.await: cre ...
- Oracle wm_concat(列转行函数)实际使用
接触到了一个开发需求.其中是要把NC单据表体行的字段拼成一个字符串.例如: id name work age 1 王一 搬运工 20 2 李二 清洁工 21 3 张三 洗脚工 22 出现结果字符串为: ...
- Dockerfile文件格式的简单介绍
# This dockerfile uses the ubuntu image # VERSION 2 - EDITION 1 # Author: docker_user # Command form ...
- U3D简单得换装技术
四个类完成,前提是 资源得名字配合 UI按钮点击响应类 using UnityEngine; using System.Collections; public class ButtonClickHan ...
- Python学习懒出极致——自备常用链接
linux: samba配置:http://blog.chinaunix.net/uid-23069658-id-3142052.html ubuntu: mysql启停:http://www.2ct ...
- zabbix 安装配置以及漏洞检测脚本
最近zabbix爆出sql注入漏洞.之前一直没装过.就想着来安装一次.我在centos配置玩玩,记录一下:1.安装LAMP yum -y install httpd mysql mysql-ser ...
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572
Description
On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volume can be ignored.
Currently the ball stands still at point A, then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.
We're just curious about whether the ball will pass point B after some time.
Input
First line contains an integer T, which indicates the number of test cases.
Every test case contains three lines.
The first line contains three integers Ox, Oy and r, indicating the center of cylinder is (Ox,Oy) and its radius is r.
The second line contains four integers Ax, Ay, Vx and Vy, indicating the coordinate of A is (Ax,Ay) and the initial direction vector is (Vx,Vy).
The last line contains two integers Bx and By, indicating the coordinate of point B is (Bx,By).
⋅ 1 ≤ T ≤ 100.
⋅ |Ox|,|Oy|≤ 1000.
⋅ 1 ≤ r ≤ 100.
⋅ |Ax|,|Ay|,|Bx|,|By|≤ 1000.
⋅ |Vx|,|Vy|≤ 1000.
⋅ Vx≠0 or Vy≠0.
⋅ both A and B are outside of the cylinder and they are not at same position.
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1. y is "Yes" if the ball will pass point B after some time, otherwise y is "No".
Sample Input
2
0 0 1
2 2 0 1
-1 -1
0 0 1
-1 2 1 -1
1 2
Sample Output
Case #1: No
Case #2: Yes
题意:
在平面内给你一个固定的实心圆,然后从a点有一个球,给你运动方向问能否撞击到b点。
题解:
首先是能不能够撞击到大的圆。这个判断可以联立运动方程和圆的方程,产生一个一元二次方程,无解或者解小于0则是不撞击。如不能撞击到那么就判断直线运动能否撞击到b点即可。如果能撞击到,判断撞击之前能否撞到b点。如不能,将a点关于圆心与撞击点连成的直线的对称点求出,这样就可以再次判断。注意:一定不要通过普适方程求解,使用向量求解对称点,否则Wa到世界末日。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long double ld;
const ld eps = 1e-10;
ld r;
int sgn(ld x){
if (fabs(x) < eps)
return 0;
return x > 0?1:-1;
}
struct Point{
ld x,y;
Point (double _x = 0, double _y = 0):x(_x), y(_y) {}
bool operator < (const Point &b) const {
return (sgn (x-b.x) == 0 ? sgn (y-b.y) < 0 : x < b.x);
}
Point operator + (const Point &b) const {
return Point (x+b.x, y+b.y);
}
Point operator - (const Point &b) const {
return Point (x-b.x, y-b.y);
}
Point operator * (double a) {
return Point (x*a, y*a);
}
Point operator / (double a) {
return Point (x/a, y/a);
}
double len2 () {//返回长度的平方
return x*x + y*y;
}
double len () {//返回长度
return sqrt (len2 ());
}
Point change_len (double r) {//转化为长度为r的向量
double l = len ();
if (sgn (l) == 0) return *this;//零向量返回自身
r /= l;
return Point (x*r, y*r);
}
};
Point a,b,c,da;
bool rig(ld x,ld y,ld dx,ld dy,ld px,ld py)
{
ld t;
if (sgn(dx) == 0){
t = (py-y)/dy ;
if (sgn(x+t*dx-px) == 0 && t >= 0)
return true;
return false;
}else {
t = (px-x)/dx;
if (sgn(y+t*dy-py) == 0 && t >= 0)
return true;
return false;
}
}
ld dot(const Point &a,const Point &b){
return a.x*b.x+a.y*b.y;
}
Point projection (Point p, Point s,Point e) {
return s + (((e-s) * dot (e-s, p-s)) / (e-s).len2() );
}
Point dc(Point p,Point s,Point e)
{
Point q = projection(p,s,e);
return Point (2*q.x-p.x, 2*q.y-p.y);
}
bool solve()
{
ld A,B,C;
A = da.x*da.x + da.y*da.y;
B = 2.0*(da.x*(a.x-c.x) + da.y*(a.y-c.y)) ;
C = (a.x-c.x)*(a.x-c.x) + (a.y-c.y)*(a.y-c.y) -r*r;
ld dlt = B*B - 4.0*A*C;
if (sgn(dlt) <= 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}else {
ld t = (-B-sqrt(dlt))/A/2.0;
if (sgn(t) < 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}
Point hit;
hit.x = a.x+t*da.x;
hit.y = a.y+t*da.y;
if (rig(a.x,a.y,da.x,da.y,b.x,b.y))
if (b.x >= min(hit.x,a.x) && b.x <= max(hit.x,a.x) && b.y >= min(a.y,hit.y) && b.y <= max(a.y,hit.y))
return true;
Point bb = dc(a,hit,c);
return rig(hit.x,hit.y,bb.x-hit.x,bb.y-hit.y,b.x,b.y);
}
}
int main()
{
int t;
scanf("%d",&t);
for (int _t = 1; _t <= t; _t++){
cin>>c.x>>c.y>>r;
cin>>a.x>>a.y>>da.x>>da.y;
cin>>b.x>>b.y;
printf("Case #%d: ",_t);
if (solve())
printf("Yes\n");
else printf("No\n");
}
return 0;
}
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
计算几何的题做的真是少之又少. 之前wa以为是精度问题,后来发现是情况没有考虑全... 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意: ...
[题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...
2015上海区域赛现场赛第5题. 题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意:在平面上,已知圆(O, R),点B.A(均在圆外),向量 ...
题目链接:HDU 5572 Problem Description On an infinite smooth table, there's a big round fixed cylinder an ...
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
题意: 光滑平面,一个刚性小球,一个固定的刚性圆柱体 ,给定圆柱体圆心坐标,半径 ,小球起点坐标,起始运动方向(向量) ,终点坐标 ,问能否到达终点,小球运动中如果碰到圆柱体会反射. 学到了向量模板, ...
HDU 4974 A simple water problem pid=4974" target="_blank" style="">题目链接 ...
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
关于IOS开发的内存管理的文章已经很多了,因此系统的知识点就不写了,这里我写点平时工作遇到的疑问以及解答做个总结吧,相信也会有人遇到相同的疑问呢,欢迎学习IOS的朋友请加ios技术交流群:190956 ...
<meta http-equiv="X-UA-Compatible" content="IE=edge">
简单通讯录功能虽然简单,却包括了制作一个网站的基本功能!各个模块可以作为新手入门的参考. 简单通讯录实现功能:1.登录 2.注册 3.后台管理 4.前台登录显示 5.创建联系人 6.密码修改 代码下载 ...
kubernetes源码阅读 工欲善其事,必先利其器.在阅读kubernetes源码时,我也先后使用过多个IDE,最终还是停留在IDEA上. 我惯用的是pycharm(IDEA的python IDE版 ...
1.错误描述 2011-7-20 11:05:18 org.apache.catalina.core.StandardServer await严重: StandardServer.await: cre ...
接触到了一个开发需求.其中是要把NC单据表体行的字段拼成一个字符串.例如: id name work age 1 王一 搬运工 20 2 李二 清洁工 21 3 张三 洗脚工 22 出现结果字符串为: ...
# This dockerfile uses the ubuntu image # VERSION 2 - EDITION 1 # Author: docker_user # Command form ...
四个类完成,前提是 资源得名字配合 UI按钮点击响应类 using UnityEngine; using System.Collections; public class ButtonClickHan ...
linux: samba配置:http://blog.chinaunix.net/uid-23069658-id-3142052.html ubuntu: mysql启停:http://www.2ct ...
最近zabbix爆出sql注入漏洞.之前一直没装过.就想着来安装一次.我在centos配置玩玩,记录一下:1.安装LAMP yum -y install httpd mysql mysql-ser ...