HDU 5572 An Easy Physics Problem (计算几何+对称点模板)
HDU 5572 An Easy Physics Problem (计算几何)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572
Description
On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volume can be ignored.
Currently the ball stands still at point A, then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.
We're just curious about whether the ball will pass point B after some time.
Input
First line contains an integer T, which indicates the number of test cases.
Every test case contains three lines.
The first line contains three integers Ox, Oy and r, indicating the center of cylinder is (Ox,Oy) and its radius is r.
The second line contains four integers Ax, Ay, Vx and Vy, indicating the coordinate of A is (Ax,Ay) and the initial direction vector is (Vx,Vy).
The last line contains two integers Bx and By, indicating the coordinate of point B is (Bx,By).
⋅ 1 ≤ T ≤ 100.
⋅ |Ox|,|Oy|≤ 1000.
⋅ 1 ≤ r ≤ 100.
⋅ |Ax|,|Ay|,|Bx|,|By|≤ 1000.
⋅ |Vx|,|Vy|≤ 1000.
⋅ Vx≠0 or Vy≠0.
⋅ both A and B are outside of the cylinder and they are not at same position.
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1. y is "Yes" if the ball will pass point B after some time, otherwise y is "No".
Sample Input
2
0 0 1
2 2 0 1
-1 -1
0 0 1
-1 2 1 -1
1 2
Sample Output
Case #1: No
Case #2: Yes
题意:
在平面内给你一个固定的实心圆,然后从a点有一个球,给你运动方向问能否撞击到b点。
题解:
首先是能不能够撞击到大的圆。这个判断可以联立运动方程和圆的方程,产生一个一元二次方程,无解或者解小于0则是不撞击。如不能撞击到那么就判断直线运动能否撞击到b点即可。如果能撞击到,判断撞击之前能否撞到b点。如不能,将a点关于圆心与撞击点连成的直线的对称点求出,这样就可以再次判断。注意:一定不要通过普适方程求解,使用向量求解对称点,否则Wa到世界末日。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long double ld;
const ld eps = 1e-10;
ld r;
int sgn(ld x){
if (fabs(x) < eps)
return 0;
return x > 0?1:-1;
}
struct Point{
ld x,y;
Point (double _x = 0, double _y = 0):x(_x), y(_y) {}
bool operator < (const Point &b) const {
return (sgn (x-b.x) == 0 ? sgn (y-b.y) < 0 : x < b.x);
}
Point operator + (const Point &b) const {
return Point (x+b.x, y+b.y);
}
Point operator - (const Point &b) const {
return Point (x-b.x, y-b.y);
}
Point operator * (double a) {
return Point (x*a, y*a);
}
Point operator / (double a) {
return Point (x/a, y/a);
}
double len2 () {//返回长度的平方
return x*x + y*y;
}
double len () {//返回长度
return sqrt (len2 ());
}
Point change_len (double r) {//转化为长度为r的向量
double l = len ();
if (sgn (l) == 0) return *this;//零向量返回自身
r /= l;
return Point (x*r, y*r);
}
};
Point a,b,c,da;
bool rig(ld x,ld y,ld dx,ld dy,ld px,ld py)
{
ld t;
if (sgn(dx) == 0){
t = (py-y)/dy ;
if (sgn(x+t*dx-px) == 0 && t >= 0)
return true;
return false;
}else {
t = (px-x)/dx;
if (sgn(y+t*dy-py) == 0 && t >= 0)
return true;
return false;
}
}
ld dot(const Point &a,const Point &b){
return a.x*b.x+a.y*b.y;
}
Point projection (Point p, Point s,Point e) {
return s + (((e-s) * dot (e-s, p-s)) / (e-s).len2() );
}
Point dc(Point p,Point s,Point e)
{
Point q = projection(p,s,e);
return Point (2*q.x-p.x, 2*q.y-p.y);
}
bool solve()
{
ld A,B,C;
A = da.x*da.x + da.y*da.y;
B = 2.0*(da.x*(a.x-c.x) + da.y*(a.y-c.y)) ;
C = (a.x-c.x)*(a.x-c.x) + (a.y-c.y)*(a.y-c.y) -r*r;
ld dlt = B*B - 4.0*A*C;
if (sgn(dlt) <= 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}else {
ld t = (-B-sqrt(dlt))/A/2.0;
if (sgn(t) < 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}
Point hit;
hit.x = a.x+t*da.x;
hit.y = a.y+t*da.y;
if (rig(a.x,a.y,da.x,da.y,b.x,b.y))
if (b.x >= min(hit.x,a.x) && b.x <= max(hit.x,a.x) && b.y >= min(a.y,hit.y) && b.y <= max(a.y,hit.y))
return true;
Point bb = dc(a,hit,c);
return rig(hit.x,hit.y,bb.x-hit.x,bb.y-hit.y,b.x,b.y);
}
}
int main()
{
int t;
scanf("%d",&t);
for (int _t = 1; _t <= t; _t++){
cin>>c.x>>c.y>>r;
cin>>a.x>>a.y>>da.x>>da.y;
cin>>b.x>>b.y;
printf("Case #%d: ",_t);
if (solve())
printf("Yes\n");
else printf("No\n");
}
return 0;
}
HDU 5572 An Easy Physics Problem (计算几何+对称点模板)的更多相关文章
- hdu 5572 An Easy Physics Problem 圆+直线
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- HDU 5572 An Easy Physics Problem【计算几何】
计算几何的题做的真是少之又少. 之前wa以为是精度问题,后来发现是情况没有考虑全... 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意: ...
- HDU - 5572 An Easy Physics Problem (计算几何模板)
[题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...
- 【HDU 5572 An Easy Physics Problem】计算几何基础
2015上海区域赛现场赛第5题. 题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意:在平面上,已知圆(O, R),点B.A(均在圆外),向量 ...
- 2015 ACM-ICPC 亚洲区上海站 A - An Easy Physics Problem (计算几何)
题目链接:HDU 5572 Problem Description On an infinite smooth table, there's a big round fixed cylinder an ...
- HDU 5572--An Easy Physics Problem(射线和圆的交点)
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- ACM 2015年上海区域赛A题 HDU 5572An Easy Physics Problem
题意: 光滑平面,一个刚性小球,一个固定的刚性圆柱体 ,给定圆柱体圆心坐标,半径 ,小球起点坐标,起始运动方向(向量) ,终点坐标 ,问能否到达终点,小球运动中如果碰到圆柱体会反射. 学到了向量模板, ...
- HDU 4974 A simple water problem(贪心)
HDU 4974 A simple water problem pid=4974" target="_blank" style="">题目链接 ...
- hdu 1040 As Easy As A+B
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- 前端MVVM框架avalon - 模型转换1
轻量级前端MVVM框架avalon - 模型转换(一) 接上一章 ViewModel modelFactory工厂是如何加工用户定义的VM? 附源码 洋洋洒洒100多行内部是魔幻般的实现 1: fun ...
- MacOSX中使用NSWindow创建背景透明的窗体
1.Windows 在window上创建异形窗体必须要使用WS_EX_LAYERED样式,再调用SetLayeredWindowAttributes设置透明度或者透明颜色属性.用updatelayer ...
- jsp传值乱码解决办法
在jsp中,我们经常从数据库读取数据返回客户端,但我们常常在制作时出现乱码现象,所以我们可以用<%request.setCharacterEncoding("UTF-8"); ...
- 文件上传<springmvc>
使用commons-fileupload-1.3.1.jar和commons-io-2.4.jar web.xml <?xml version="1.0" encoding= ...
- unity3D学习序幕
目前,我所在的公司不适合我长久发展,在一好友的提示下,我决定以unity3D程序员的身份,返回我2013年工作过的那家公司.关于unity3D,除了几年前一点模糊的记忆,其他都是一篇空白.今年年初我买 ...
- php钩子程序设计
序 作为程序员,设计出优雅而完美的系统,永远是让我们非常兴奋的事情.高手不在于你会多少语言,而在于你有多高的思想. 在设计中,怎么体现自身价值,那就是要比别人多想几步. 讲钩子程序,起 ...
- 学习web之路
一些文章是转接过来,有些是自己原创的.希望大家喜欢,By:xiaohaimian' q:963892669
- 驱动05.lcd设备驱动程序
参考s3c2410fb.c总结出框架 1.代码分析 1.1 入口函数 int __devinit s3c2410fb_init(void) { return platform_driver_regis ...
- Altium Designer 快速修改板子形状为Keep-out layer大小
Altium Designer 快速修改板子形状为Keep-out layer大小 1,切换到 Keep-out layer层, 2,选择层,快捷键为S+Y: 3,设计>>板子形状> ...
- JS 常用功能收集
JS 常用效果收集 1. 回到顶部>> 爱词霸
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572
Description
On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volume can be ignored.
Currently the ball stands still at point A, then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.
We're just curious about whether the ball will pass point B after some time.
Input
First line contains an integer T, which indicates the number of test cases.
Every test case contains three lines.
The first line contains three integers Ox, Oy and r, indicating the center of cylinder is (Ox,Oy) and its radius is r.
The second line contains four integers Ax, Ay, Vx and Vy, indicating the coordinate of A is (Ax,Ay) and the initial direction vector is (Vx,Vy).
The last line contains two integers Bx and By, indicating the coordinate of point B is (Bx,By).
⋅ 1 ≤ T ≤ 100.
⋅ |Ox|,|Oy|≤ 1000.
⋅ 1 ≤ r ≤ 100.
⋅ |Ax|,|Ay|,|Bx|,|By|≤ 1000.
⋅ |Vx|,|Vy|≤ 1000.
⋅ Vx≠0 or Vy≠0.
⋅ both A and B are outside of the cylinder and they are not at same position.
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1. y is "Yes" if the ball will pass point B after some time, otherwise y is "No".
Sample Input
2
0 0 1
2 2 0 1
-1 -1
0 0 1
-1 2 1 -1
1 2
Sample Output
Case #1: No
Case #2: Yes
题意:
在平面内给你一个固定的实心圆,然后从a点有一个球,给你运动方向问能否撞击到b点。
题解:
首先是能不能够撞击到大的圆。这个判断可以联立运动方程和圆的方程,产生一个一元二次方程,无解或者解小于0则是不撞击。如不能撞击到那么就判断直线运动能否撞击到b点即可。如果能撞击到,判断撞击之前能否撞到b点。如不能,将a点关于圆心与撞击点连成的直线的对称点求出,这样就可以再次判断。注意:一定不要通过普适方程求解,使用向量求解对称点,否则Wa到世界末日。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long double ld;
const ld eps = 1e-10;
ld r;
int sgn(ld x){
if (fabs(x) < eps)
return 0;
return x > 0?1:-1;
}
struct Point{
ld x,y;
Point (double _x = 0, double _y = 0):x(_x), y(_y) {}
bool operator < (const Point &b) const {
return (sgn (x-b.x) == 0 ? sgn (y-b.y) < 0 : x < b.x);
}
Point operator + (const Point &b) const {
return Point (x+b.x, y+b.y);
}
Point operator - (const Point &b) const {
return Point (x-b.x, y-b.y);
}
Point operator * (double a) {
return Point (x*a, y*a);
}
Point operator / (double a) {
return Point (x/a, y/a);
}
double len2 () {//返回长度的平方
return x*x + y*y;
}
double len () {//返回长度
return sqrt (len2 ());
}
Point change_len (double r) {//转化为长度为r的向量
double l = len ();
if (sgn (l) == 0) return *this;//零向量返回自身
r /= l;
return Point (x*r, y*r);
}
};
Point a,b,c,da;
bool rig(ld x,ld y,ld dx,ld dy,ld px,ld py)
{
ld t;
if (sgn(dx) == 0){
t = (py-y)/dy ;
if (sgn(x+t*dx-px) == 0 && t >= 0)
return true;
return false;
}else {
t = (px-x)/dx;
if (sgn(y+t*dy-py) == 0 && t >= 0)
return true;
return false;
}
}
ld dot(const Point &a,const Point &b){
return a.x*b.x+a.y*b.y;
}
Point projection (Point p, Point s,Point e) {
return s + (((e-s) * dot (e-s, p-s)) / (e-s).len2() );
}
Point dc(Point p,Point s,Point e)
{
Point q = projection(p,s,e);
return Point (2*q.x-p.x, 2*q.y-p.y);
}
bool solve()
{
ld A,B,C;
A = da.x*da.x + da.y*da.y;
B = 2.0*(da.x*(a.x-c.x) + da.y*(a.y-c.y)) ;
C = (a.x-c.x)*(a.x-c.x) + (a.y-c.y)*(a.y-c.y) -r*r;
ld dlt = B*B - 4.0*A*C;
if (sgn(dlt) <= 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}else {
ld t = (-B-sqrt(dlt))/A/2.0;
if (sgn(t) < 0){
return rig(a.x,a.y,da.x,da.y,b.x,b.y);
}
Point hit;
hit.x = a.x+t*da.x;
hit.y = a.y+t*da.y;
if (rig(a.x,a.y,da.x,da.y,b.x,b.y))
if (b.x >= min(hit.x,a.x) && b.x <= max(hit.x,a.x) && b.y >= min(a.y,hit.y) && b.y <= max(a.y,hit.y))
return true;
Point bb = dc(a,hit,c);
return rig(hit.x,hit.y,bb.x-hit.x,bb.y-hit.y,b.x,b.y);
}
}
int main()
{
int t;
scanf("%d",&t);
for (int _t = 1; _t <= t; _t++){
cin>>c.x>>c.y>>r;
cin>>a.x>>a.y>>da.x>>da.y;
cin>>b.x>>b.y;
printf("Case #%d: ",_t);
if (solve())
printf("Yes\n");
else printf("No\n");
}
return 0;
}
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
计算几何的题做的真是少之又少. 之前wa以为是精度问题,后来发现是情况没有考虑全... 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意: ...
[题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...
2015上海区域赛现场赛第5题. 题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意:在平面上,已知圆(O, R),点B.A(均在圆外),向量 ...
题目链接:HDU 5572 Problem Description On an infinite smooth table, there's a big round fixed cylinder an ...
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
题意: 光滑平面,一个刚性小球,一个固定的刚性圆柱体 ,给定圆柱体圆心坐标,半径 ,小球起点坐标,起始运动方向(向量) ,终点坐标 ,问能否到达终点,小球运动中如果碰到圆柱体会反射. 学到了向量模板, ...
HDU 4974 A simple water problem pid=4974" target="_blank" style="">题目链接 ...
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
轻量级前端MVVM框架avalon - 模型转换(一) 接上一章 ViewModel modelFactory工厂是如何加工用户定义的VM? 附源码 洋洋洒洒100多行内部是魔幻般的实现 1: fun ...
1.Windows 在window上创建异形窗体必须要使用WS_EX_LAYERED样式,再调用SetLayeredWindowAttributes设置透明度或者透明颜色属性.用updatelayer ...
在jsp中,我们经常从数据库读取数据返回客户端,但我们常常在制作时出现乱码现象,所以我们可以用<%request.setCharacterEncoding("UTF-8"); ...
使用commons-fileupload-1.3.1.jar和commons-io-2.4.jar web.xml <?xml version="1.0" encoding= ...
目前,我所在的公司不适合我长久发展,在一好友的提示下,我决定以unity3D程序员的身份,返回我2013年工作过的那家公司.关于unity3D,除了几年前一点模糊的记忆,其他都是一篇空白.今年年初我买 ...
序 作为程序员,设计出优雅而完美的系统,永远是让我们非常兴奋的事情.高手不在于你会多少语言,而在于你有多高的思想. 在设计中,怎么体现自身价值,那就是要比别人多想几步. 讲钩子程序,起 ...
一些文章是转接过来,有些是自己原创的.希望大家喜欢,By:xiaohaimian' q:963892669
参考s3c2410fb.c总结出框架 1.代码分析 1.1 入口函数 int __devinit s3c2410fb_init(void) { return platform_driver_regis ...
Altium Designer 快速修改板子形状为Keep-out layer大小 1,切换到 Keep-out layer层, 2,选择层,快捷键为S+Y: 3,设计>>板子形状> ...
JS 常用效果收集 1. 回到顶部>> 爱词霸