luogu2606 排列计数
题目大意
求满足下列条件的排列$P$的数量:$\forall P_i, P_i>P_{\lfloor \frac{i}{2}\rfloor}$。
思路
从下标入手
反过来想,也就是对$\forall P_i, P_i<P_{2i}且P_i<P_{2i+1}$。因为小根堆中一个“小三角”中节点的编号满足:若顶部编号为$i$,则左下角节点编号为"2i",右下角为$2i+1$,因此题目就是要让我们求大小为$n$的小根堆的数量。
递归式
因为堆这个结构有“子堆”这个子结构,所以可以递归。定义$l(n)$为大小为$n$的堆的左子堆大小,$f(i)$为大小为$i$,所有节点的值的取值范围一定(但并没有具体指定)时都不相等的堆有多少个。该堆的左子堆的个数等于当左子堆所有节点的值的取值范围的种数($C_{n-1}^{l(n)}$)乘以当所有节点的值的取值范围一定时的堆数($f(l(n))$)。分析完左子堆,随后还要乘以右子堆的堆数($f(r(n))$)。由于左子堆取值范围的种数确定了,右子堆的也确定了,所以不用再次乘以$C_{n-1}^{r(n)}$了。故总递归式为:
$$f(n)=C_{n-1}^{l(n)}f(l(n))f(r(n))$$
注意求组合数时要用Lucas定理取模。
怎么求$l(n),r(n)$?
注意这个没有通项公式,要按照堆的顺序递归解决。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define ll long long
const int MAX_N = 1000010;
ll F[MAX_N], Fact[MAX_N];
int Size_Lsize[MAX_N], Size_Rsize[MAX_N]; int GetSize(int curNode, int n)
{
if (curNode > n)
return 0;
int lSize = GetSize(curNode * 2, n), rSize = GetSize(curNode * 2 + 1, n), curSize = lSize + rSize + 1;
Size_Lsize[curSize] = lSize, Size_Rsize[curSize] = rSize;
return curSize;
} void GetFact(int n, int p)
{
Fact[0] = Fact[1] = 1;
for (ll i = 2; i <= n; i++)
Fact[i] = i * Fact[i - 1] % p;
} ll Mult(ll a, ll b, ll p)
{
ll ans = 0;
while (b)
{
if (b & 1)
ans = (ans + a) % p;
a = (a + a) % p;
b >>= 1;
}
return ans;
} ll Power(ll a, ll n, ll p)
{
ll ans = 1;
while (n)
{
if (n & 1)
ans = Mult(ans, a, p);
a = Mult(a, a, p);
n >>= 1;
}
return ans;
} ll Inv(ll a, ll p)
{
return Power(a, p - 2, p);
} ll Comb(int n, int m, int p)
{
return Fact[n] * Inv(Mult(Fact[n - m], Fact[m], p), p);
} ll Lucas(int n, int m, int p)
{
if (m == 0)
return 1;
return Comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
} ll Dfs(int n, int p)
{
if (F[n])
return F[n];
if (n == 1 || n == 0)
return F[n] = 1;
return F[n] = Dfs(Size_Lsize[n], p) * Dfs(Size_Rsize[n], p) % p * Lucas(n - 1, Size_Lsize[n], p) % p;//易忘点:Dfs后的%p
} int main()
{
int n;
ll p;
scanf("%d%lld", &n, &p);
GetSize(1, n);
GetFact(n, p);
printf("%lld\n", Dfs(n, p));
return 0;
}
luogu2606 排列计数的更多相关文章
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)
题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 846 Solved: 530[Submit][ ...
- ACM/ICPC 之 DP-浅谈“排列计数” (POJ1037)
这一题是最近在看Coursera的<算法与设计>的公开课时看到的一道较难的DP例题,之所以写下来,一方面是因为DP的状态我想了很久才想明白,所以借此记录,另一方面是看到这一题有运用到 排列 ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- 【数论·错位排列】bzoj4517 排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1428 Solved: 872[Submit][Statu ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- bzoj4517排列计数 错排+组合
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1491 Solved: 903[Submit][Statu ...
- BZOJ_4517_[Sdoi2016]排列计数_组合数学
BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...
随机推荐
- 关于网站图片格式 png,jpg,
小图标用 png 采用无损压缩.可存储透明图片. 适合存储icon, logo 等颜色对比明显,又小的图片. 劣势:索引色数量有限,不适合大图片,颜色层次丰富. 大图片用 jpg 采用了压缩算法,会有 ...
- .Net Core学习(一)
1.安装.Net Core https://www.microsoft.com/net/core#windows 2.创建一个.Net Core项目,win+R调出控制台,输入下面命令 mkdir a ...
- invoke与call
“调用一个委托实例” 中的 “调用” 对应的是invoke,理解为 “唤出” 更恰当.它和后面的 “在一个对象上调用方法” 中的 “调用” 稍有不同,后则对应的是call.在英语的语境中,invoke ...
- 1.java安全框架SHIRO
1. shiro介绍 Apache Shiro是一个强大且易用的java安全框架,执行身份验证.授权.密码和会话管理. 使用Shiro的易于理解的API,您可以快速.轻松地获得任何应用程序,从最小的移 ...
- [hihocoder][Offer收割]编程练习赛50
循环数组 计算a[i]的前缀和s[i],计算l[i]为1~i-1中最小的s值,r[i]为i~n中最大的s值. 则a[i]~a[n]满足性质的条件为r[i]-s[i-1]>0,a[1]~a[i-1 ...
- Vue2-Editor 使用
Vue-Editor底层采取的是quill.js,而quill.js采用的是html5的新属性classList,所以版本低于ie10会报错“无法获取未定义或 null 引用的属性‘confirm’” ...
- Windows7 win10 系统如何强制禁用驱动程序签名
转载自奇兔 Win7 64位系统禁用驱动程序签名强制 Win7系统是比较稳定的一款系统,也是最多人在使用的一款系统.当我们在Win7系统中安装驱动程序的时候,对安装的驱动程序需要数字签名,否则驱 ...
- POJ_2186_Popular Cows_强连通分量
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 30680 Accepted: 12445 De ...
- centos7下安装python3 解决openssl等一系列问题
最近折腾了下centos7,发现按正常方法安装python3.7后面会出现各种操蛋的问题. 主要的问题有三个,openssl版本过低,'_ctypes'缺失,以及安装后sqlite3缺失.下面我会贴出 ...
- Apex语言(七)集合
1.集合 集合是可以存储多个记录数的变量类型. List列表集合可以包含任何数量的数据,与数组类似. Set列表集合包含多个无序的唯一记录数,集合不能具有重复记录,与列表类似. Map地图是一个键值对 ...