Sum

                                                                               Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
                                                                               Total Submission(s): 2633    Accepted Submission(s): 1104

Problem Description
 
Sample Input
2
Sample Output
2

Hint

1. For N = 2, S(1) = S(2) = 1.

2. The input file consists of multiple test cases.

 
Source
题意 :给定一个数n 将其分解,Si 表示将n拆成i个数的方案数
用隔板法可以很容易算出结果2^(n-1),mod=1e9+7;
gcd(2,mod)=1; 费马小定理  2^(mod-1)%mod=1;
结果求2^(n-1)%mod ==>2^[(n-1)%(mod-1)]%mod
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cstdlib>
#include<stack>
#include<string>
#define eps 0.000000001
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const int N=+;
const ll mod=1e9+;
char str[N];
ll ksm(ll a,ll b){
ll ans=;
while(b){
if(b&){
ans=ans*a%mod;
}
b=b/;
a=a*a%mod;
}
return ans;
}
int main(){
while(gets(str)){
ll m=mod-;
ll ans=;
int len=strlen(str);
for(int i=;i<len;i++){
ans=ans*+str[i]-'';
if(ans>=m)ans=ans%m;
}
ans=(ans-+m)%m;
ll t;
t=ksm(,ans);
printf("%lld\n",t);
}
}
 

hdu 4704(费马小定理+快速幂取模)的更多相关文章

  1. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

  2. 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)

    There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...

  3. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  4. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  5. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  6. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  7. HDU 4704 Sum( 费马小定理 + 快速幂 )

    链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...

  8. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  9. hdu 4704(费马小定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4704 思路:一道整数划分题目,不难推出公式:2^(n-1),根据费马小定理:(2,MOD)互质,则2^ ...

随机推荐

  1. 使用jQuery的toggle()方法对HTML标签进行显示、隐藏操作

    这是一个示例: <html> <head> <script type="text/javascript" src="https://code ...

  2. hibernate工作流程、session

    hibernate是对jdbc的封装,不建议直接使用jdbc的connection操作数据库,而是通过session操作数据库.session可以理解为操作数据库的对象. session与connec ...

  3. sqlserver 批量更新

    select * from [LPicture] UPDATE [dbo].[LPicture] SET [picGroup] = ' WHERE LPictureid ,); select * fr ...

  4. Win10电脑如何更改开机启动项

    https://jingyan.baidu.com/article/5970355284f0458fc1074049.html

  5. PAT-day1

    1001 害死人不偿命的(3n+1)猜想 (15 分)   卡拉兹(Callatz)猜想: 对任何一个正整数 n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把 ( 3n+1)砍掉一半.这样一直 ...

  6. 最适合初学者的Linux运维学习教程2018版

    Linux运维工程师是一个新颖岗位,现在非常吃香,目前从行业的角度分析,随着国内软件行业不断发展壮大,越来越多复杂系统应运而生,为了保证系统稳定运行,必须要有足够多的Linux运维工程师.维护是软件生 ...

  7. How To:防火墙规则去重

    主要命令 iptables-save| awk ' !x[$0]++ | iptables-restore 演示: [root@testname ~]# iptables -vL Chain INPU ...

  8. JavaScript 复杂判断的优雅写法

    JavaScript 复杂判断的优雅写法 <div> <input type="button" name="btn" value=" ...

  9. axios的基本概念和安装以及配置方法

    ajax:异步请求,是一种无需再重新加载整个网页的情况下,能够更新部分网页的技术 axios:用于浏览器和node.js的基于promise的HTTP客户端 1.从浏览器制作XMLHttpReques ...

  10. DOMContentLoaded 与onload区别以及使用

    一.何时触发这两个事件? 1.当 onload 事件触发时,页面上所有的DOM,样式表,脚本,图片,flash都已经加载完成了. 2.当 DOMContentLoaded 事件触发时,仅当DOM加载完 ...