这是悦乐书的第342次更新,第366篇原创

01 看题和准备

今天介绍的是LeetCode算法题中Medium级别的第3题(顺位题号是5)。给定一个字符串s,找到s中最长的回文子字符串。 您可以假设s的最大长度为1000。例如:

输入:“babad”

输出:“bab”

注意:“aba”也是一个有效的答案。

输入:“cbbd”

输出:“bb”

02 第一种解法

暴力解法。

使用两层循环截取出所有的子串,判断该子串是否是回文,从中取长度最长的子串作为结果输出。

此解法时间复杂度是O(N^3),空间复杂度是O(1)

public String longestPalindrome(String s) {
int max = 0, n = s.length();
String result = "";
for (int i=0; i<n; i++) {
for (int j=i+1; j<=n; j++) {
String tem = s.substring(i,j);
if (isPalindrome(tem)) {
if (j-i > max) {
max = j-i;
result = tem;
}
}
}
}
return result;
} public boolean isPalindrome(String s){
int left = 0, right = s.length()-1;
while (left < right) {
if (s.charAt(left) != s.charAt(right)) {
return false;
}
left++;
right--;
}
return true;
}

03 第二种解法

我们也可以换一种找回文的方式,从左右两边向中间变成由中间向左右两边。

此时需要考虑回文的长度是奇数还是偶数的情况,如果是奇数形回文,就以当前字符为中心左右两边寻找,例如回文"bab";如果是偶数形回文,需要两个字符,并且这两个字符是相等的,则需要以当前字符和其相邻的字符为中心向左右两边寻找,例如回文"abba"。

此解法的时间复杂度是O(N^2),空间复杂度是O(1)

public String longestPalindrome2(String s) {
if (s.length() < 2) {
return s;
}
int n = s.length(), start = 0, end = 0;
for (int i=0; i<n-1; i++) {
int len = helper(s, i, i);
int len2 = helper(s, i, i+1);
int len3 = Math.max(len, len2);
if (len3 > end - start) {
start = i - (len3-1)/2;
end = i + len3/2;
}
}
return s.substring(start, end+1);
} /**
* 以当前字符为中心向左右两边扩散,寻找回文子串
* @param s 字符串
* @param left 起始索引
* @param right 结束索引
* @return 回文子串长度
*/
public int helper(String s, int left, int right) {
int n = s.length(), L = left, R = right;
while (L >= 0 && R < n && s.charAt(L) == s.charAt(R)) {
// 继续向左寻找
L--;
// 继续向右寻找
R++;
}
return R - L -1;
}

04 第三种解法

动态规划算法,用空间换时间,是对第一种解法的改进。

此解法的时间复杂度是O(N^2),空间复杂度是O(N^2)

public String longestPalindrome3(String s) {
if (s.length() < 2) {
return s;
}
int n = s.length(), start = 0, end = 0;
int maxLen = 0;
// dp[j][i]表示子串[j,i]是回文
boolean[][] dp = new boolean[n][n];
// 右边界
for (int i=0; i<n; i++) {
// 左边界
for (int j=i; j>=0; j--) {
if (i == j) {
dp[j][i] = true;
} else if (s.charAt(i) == s.charAt(j)) {
// 回文中至少3个字符
if (j < i-1) {
dp[j][i] = dp[j+1][i-1];
} else {
dp[j][i] = true;
}
} else {
dp[i][j] = false;
}
// 比较最大值,并重新赋值
if (i-j+1 > maxLen && dp[j][i]) {
maxLen = i-j+1;
start = j;
end = i;
}
}
}
return s.substring(start, end+1);
}

05 第四种解法

马拉车算法(Manacher's Algorithm),来自于讨论区,这是第一次听说这种算法,将时间复杂度降低到了O(N),也是很厉害了,后续抽时间来详细了解下这个算法。

public String longestPalindrome4(String s) {
String T = preProcess(s);
int n = T.length();
int[] P = new int[n];
int C = 0, R = 0;
for (int i = 1; i < n - 1; i++) {
int i_mirror = 2 * C - i;
if (R > i) {
P[i] = Math.min(R - i, P[i_mirror]);
} else {
P[i] = 0;
}
while (T.charAt(i + 1 + P[i]) == T.charAt(i - 1 - P[i])) {
P[i]++;
}
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
}
int maxLen = 0;
int centerIndex = 0;
for (int i = 1; i < n - 1; i++) {
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
}
int start = (centerIndex - maxLen) / 2;
return s.substring(start, start + maxLen);
} /**
*
* @param s
* @return
*/
public String preProcess(String s) {
int n = s.length();
if (n == 0) {
return "^$";
}
String ret = "^";
for (int i = 0; i < n; i++) {
ret += "#" + s.charAt(i);
}
ret += "#$";
return ret;
}

06 小结

算法专题目前已连续日更超过六个月,算法题文章211+篇,公众号对话框回复【数据结构与算法】、【算法】、【数据结构】中的任一关键词,获取系列文章合集。

以上就是全部内容,如果大家有什么好的解法思路、建议或者其他问题,可以下方留言交流,点赞、留言、转发就是对我最大的回报和支持!

LeetCode.5-最长回文子串(Longest Palindromic Substring)的更多相关文章

  1. [译+改]最长回文子串(Longest Palindromic Substring) Part II

    [译+改]最长回文子串(Longest Palindromic Substring) Part II 原文链接在http://leetcode.com/2011/11/longest-palindro ...

  2. [译]最长回文子串(Longest Palindromic Substring) Part I

    [译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...

  3. 领扣-5 最长回文子串 Longest Palindromic Substring MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  4. 最长回文子串(Longest Palindromic Substring)-DP问题

    问题描述: 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 . 思路分析: 动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串 ...

  5. [Swift]LeetCode5. 最长回文子串 | Longest Palindromic Substring

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. 【算法】最长回文子串 longest palindrome substring

    对于字符串S, 要找到它最长的回文子串,能想到的最暴力方法,应该是对于每个元素i-th都向左向右对称搜索,最后用一个数组span 记录下相对应元素i-th为中心的回文子串长度. 那么问题来了: 1. ...

  7. LeetCode:最长回文子串【5】

    LeetCode:最长回文子串[5] 题目描述 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: ...

  8. 【LeetCode】最长回文子串【动态规划或中心扩展】

    给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: " ...

  9. Java实现 LeetCode 5 最长回文子串

    5. 最长回文子串 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad" 输出: "bab&quo ...

随机推荐

  1. sratookit

    sratookit 下载后解压 tar -zxvf sratoolkit.2.8.2-1-ubuntu64.tar.gz 移动到专门安装生物信息软件的目录下 mv sratoolkit.2.8.2-1 ...

  2. select2下拉插件

    下拉单选: 1.行内 1)初始化数据: <select class="form-control select5"> <option selected>张三1 ...

  3. windows上关闭Nagle算法

    下面的设置可以调整或禁用 nagel 算法.禁用 nagel 算法以后, 允许很小的包没有延迟立即发送.建议对某些游戏关闭 nagel 算法, 这样做对文件传输/吞吐量有负面影响.默认状态( 开启na ...

  4. Spring MVC 笔记 概述

    学习笔记 模型:封装装程序数据 视图:渲染模型数据,一般来说就是输出HTML 控制:处理请求,构建模型并将其传递给视图进行渲染 以上三者均围绕DispatcherServlet设计,它处理所有的HTT ...

  5. 亚马逊免费服务器搭建Discuz!论坛过程(四)

    上述命令还可能因缺少包引发其他错误: 如果出错则安装对应的包即可. 以下供参考: yum install libxml2 yum install libxml2-devel -y yum instal ...

  6. Python中的可迭代对象/迭代器/For循环工作机制/生成器

    本文分成6个部分: 1.iterable iterator区别 2.iterable的工作机制 3.iterator的工作机制 4.for循环的工作机制 5.generator的原理 6.总结 1.i ...

  7. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  8. Pycharm 的基本操作

    下载:https://www.jetbrains.com/pycharm/ 安装:随意安装在那个目录都可以 注册:可以采用 激活码 或者激活服务器,并对应在选项下面填入激活码或者激活服务器URL即可. ...

  9. noip模拟赛 radius

    分析:这道题实在是不好想,一个可以骗分的想法是假定要求的那个点在中心点上,可以骗得不少分.但是在边上的点要怎么确定呢?理论复杂度O(﹢无穷).答案一定是和端点有关的,涉及到最大值最小,考虑二分最大值, ...

  10. Macbook上安装Win7经验总结

    昨天兴致突发,想在Macbook上装个win7跑双系统玩玩,结果遇到了几个非常奇葩的问题.折腾了差不多一天,硬盘分区又合并分区N次,若干次卡死,最后总算搞定.记录下经验,以慰后来人. 问题一:安装程序 ...