Vectorization

Vectorization refers to a powerful way to speed up your algorithms. Numerical computing and parallel computing researchers have put decades of work into making certain numerical operations (such as matrix-matrix multiplication, matrix-matrix addition, matrix-vector multiplication) fast. The idea of vectorization is that we would like to express our learning algorithms in terms of these highly optimized operations.

More generally, a good rule-of-thumb for coding Matlab/Octave is:

Whenever possible, avoid using explicit for-loops in your code.

A large part of vectorizing our Matlab/Octave code will focus on getting rid of for loops, since this lets Matlab/Octave extract more parallelism from your code, while also incurring less computational overhead from the interpreter.

多用向量运算,别把向量拆成标量然后再循环

Logistic Regression Vectorization Example

Consider training a logistic regression model using batch gradient ascent. Suppose our hypothesis is

where we let , so that and , and is our intercept term. We have a training set of examples, and the batch gradient ascent update rule is , where is the log likelihood and is its derivative.

We thus need to compute the gradient:

Further, suppose the Matlab/Octave variable y is a row vector of the labels in the training set, so that the variable y(i) is .

Here's truly horrible, extremely slow, implementation of the gradient computation:

% Implementation
grad = zeros(n+,);
for i=:m,
h = sigmoid(theta'*x(:,i));
temp = y(i) - h;
for j=:n+,
grad(j) = grad(j) + temp * x(j,i);
end;
end;

The two nested for-loops makes this very slow. Here's a more typical implementation, that partially vectorizes the algorithm and gets better performance:

% Implementation
grad = zeros(n+,);
for i=:m,
grad = grad + (y(i) - sigmoid(theta'*x(:,i)))* x(:,i);
end;

Neural Network Vectorization

Forward propagation

Consider a 3 layer neural network (with one input, one hidden, and one output layer), and suppose x is a column vector containing a single training example . Then the forward propagation step is given by:

This is a fairly efficient implementation for a single example. If we have m examples, then we would wrap a for loop around this.

% Unvectorized implementation
for i=:m,
z2 = W1 * x(:,i) + b1;
a2 = f(z2);
z3 = W2 * a2 + b2;
h(:,i) = f(z3);
end;

For many algorithms, we will represent intermediate stages of computation via vectors. For example, z2, a2, and z3 here are all column vectors that're used to compute the activations of the hidden and output layers. In order to take better advantage of parallelism and efficient matrix operations, we would like to have our algorithm operate simultaneously on many training examples. Let us temporarily ignore b1 and b2 (say, set them to zero for now). We can then implement the following:

% Vectorized implementation (ignoring b1, b2)
z2 = W1 * x;
a2 = f(z2);
z3 = W2 * a2;
h = f(z3)

In this implementation, z2, a2, and z3 are all matrices, with one column per training example.

A common design pattern in vectorizing across training examples is that whereas previously we had a column vector (such as z2) per training example, we can often instead try to compute a matrix so that all of these column vectors are stacked together to form a matrix. Concretely, in this example, a2 becomes a s2 by m matrix (where s2 is the number of units in layer 2 of the network, and m is the number of training examples). And, the i-th column of a2 contains the activations of the hidden units (layer 2 of the network) when the i-th training example x(:,i) is input to the network.

% Inefficient, unvectorized implementation of the activation function
function output = unvectorized_f(z)
output = zeros(size(z))
for i=:size(z,),
for j=:size(z,),
output(i,j) = /(+exp(-z(i,j)));
end;
end;
end % Efficient, vectorized implementation of the activation function
function output = vectorized_f(z)
output = ./(+exp(-z)); % "./" is Matlab/Octave's element-wise division operator.
end

Finally, our vectorized implementation of forward propagation above had ignored b1 and b2. To incorporate those back in, we will use Matlab/Octave's built-in repmat function. We have:

% Vectorized implementation of forward propagation
z2 = W1 * x + repmat(b1,,m);
a2 = f(z2);
z3 = W2 * a2 + repmat(b2,,m);
h = f(z3)

repmat !!矩阵变形!!

Backpropagation

We are in a supervised learning setting, so that we have a training set of m training examples. (For the autoencoder, we simply set y(i) = x(i), but our derivation here will consider this more general setting.)

we had that for a single training example (x,y), we can compute the derivatives as

Here, denotes element-wise product. For simplicity, our description here will ignore the derivatives with respect to b(l), though your implementation of backpropagation will have to compute those derivatives too.

gradW1 = zeros(size(W1));
gradW2 = zeros(size(W2));
for i=:m,
delta3 = -(y(:,i) - h(:,i)) .* fprime(z3(:,i));
delta2 = W2'*delta3(:,i) .* fprime(z2(:,i)); gradW2 = gradW2 + delta3*a2(:,i)';
gradW1 = gradW1 + delta2*a1(:,i)';
end;

This implementation has a for loop. We would like to come up with an implementation that simultaneously performs backpropagation on all the examples, and eliminates this for loop.

To do so, we will replace the vectors delta3 and delta2 with matrices, where one column of each matrix corresponds to each training example. We will also implement a function fprime(z) that takes as input a matrix z, and applies element-wise.

Sparse autoencoder

When performing backpropagation on a single training example, we had taken into the account the sparsity penalty by computing the following:

也就是不要用循环一个样本一个样本的去更新参数,而是要将样本组织成矩阵的形式,应用矩阵运算,提高效率。

Vectorized implementation的更多相关文章

  1. DL三(向量化编程 Vectorized implementation)

    向量化编程实现 Vectorized implementation 一向量化编程 Vectorization 1.1 基本术语 向量化 vectorization 1.2 向量化编程(Vectoriz ...

  2. 机器学习公开课笔记(4):神经网络(Neural Network)——表示

    动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网 ...

  3. 转载 Deep learning:一(基础知识_1)

    前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长.不过在这这之前还是复习下m ...

  4. Deep learning:一(基础知识_1)

    本文纯转载: 主要是想系统的跟tornadomeet的顺序走一遍deeplearning; 前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程 ...

  5. machine learning 之 Neural Network 1

    整理自Andrew Ng的machine learning课程week 4. 目录: 为什么要用神经网络 神经网络的模型表示 1 神经网络的模型表示 2 实例1 实例2 多分类问题 1.为什么要用神经 ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  7. Coursera机器学习+deeplearning.ai+斯坦福CS231n

    日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Wee ...

  8. Neural Networks and Deep Learning 课程笔记(第三周)浅层神经网络(Shallow neural networks)

    3.1 神经网络概述(Neural Network Overview ) (神经网络中,我们要反复计算a和z,最终得到最后的loss function) 3.2 神经网络的表示(Neural Netw ...

  9. [UFLDL] Basic Concept

    博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html 参考资料: UFLDL wiki UFLDL St ...

随机推荐

  1. 关于node的聊天室错误

    Deprecationwarning:process,EventEmitter is deprecated use require ('events')instead 关于node的聊天室错误 > ...

  2. net实现压缩功能

    public static class Compressor { public static byte[] Compress(byte[] data) { using (MemoryStream ou ...

  3. orac

    #!/bin/bash # Copyright (c) 2013, 2016, Liang Guojun.  All rights reserved. # Program: #       Check ...

  4. AOC 电视机T3212M 进入 工厂模式方法,修改开机启动方式

    原启动方式: 通电,再按遥控 器上  “开机” 希望改成:  通电直接打开电视 方法: 1. 按遥控器上的 menu  1147  进入 工厂模式 2.  选择   7  General Settin ...

  5. Https个人总结

    花了一个星期终于搞懂了.. HTTPS个人总结: 一.RSA算法 公钥:可以分发给任意的钥匙 私钥:自己保留起来,不分发给别人的钥匙 RSA算法: 找出质数p.q n = p*q Φ(n)=(p-1) ...

  6. ES6学习4 变量的解构赋值

    变量的解构赋值 一.数组结构赋值 1.数组结构赋值 let [a, b, c] = [1, 2, 3]; ES6 可以从数组中提取值,按照对应位置,对变量赋值. 1)  本质上,这种写法属于“模式匹配 ...

  7. 判断页面是否被嵌入iframe里面

    最近在做一个项目,是一个小型的后台管理系统,这个系统可以单独打开,也可以嵌入公司大型的后台管理项目里面 这样就存在一个问题,在被嵌入大的后台管理系统后,不用显示该页面顶部导航栏和左侧的菜单栏 所以我们 ...

  8. 关于common.js里面的module.exports与es6的export default的思考总结

    背景 公司项目需要裁切功能,基于第三方图片裁切组件vue-cropper(0.4.0版本),封装了图片裁切组件(picture-cut)(放在公司内部组件库,仅限于公司内部使用) 在vue-cropp ...

  9. Redis序列化存储Java集合List等自定义类型

    在"Redis学习总结和相关资料"http://blog.csdn.net/fansunion/article/details/49278209 这篇文章中,对Redis做了总体的 ...

  10. 实现一个函数clone,可以对JS中的5种数据类型(Number、String、Object、Array、Boolean)进行值复制

     实现一个函数clone,可以对JS中的5种数据类型(Number.String.Object.Array.Boolean)进行值复制