比较简单的费用流.

我们发现题目中有几个性质:

1. 总共走 k 次.

2. 每个格子可以无限经过.

3. 每个格子最多只能贡献 1 次.

根据上述条件,我们就将每个格子进行拆点,拆成入点和出点.

入点向出点连一条 $(1,a[i][j])$ 的边,表示贡献.

入点向出点连一条 $(+\infty,0)$ 的边,表示只是经过,但不贡献.

然后对于相邻点的话就从一个点的出点连到另一个点的入点就行了.

再设超级源点,超级汇点就行了.

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<iostream>
#include<vector>
using namespace std;
typedef long long ll;
const int maxn=10000+3;
const int INF=100000+123;
int s,t,n;
struct Edge{
int from,to,cap,cost;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),cost(f){}
};
struct MCMF{
vector<Edge>edges;
vector<int>G[maxn];
int d[maxn],inq[maxn],a[maxn],flow2[maxn];
queue<int>Q;
ll ans=0;
int flow=0;
void addedge(int u,int v,int c,int f){
edges.push_back(Edge(u,v,c,f)); //正向弧
edges.push_back(Edge(v,u,0,-f)); //反向弧
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int SPFA(){
for(int i=0;i<=n*2;++i)d[i]=INF,flow2[i]=INF;
memset(inq,0,sizeof(inq));
int f=INF;
d[s]=0,inq[s]=1;Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();inq[u]=0;
int sz=G[u].size();
for(int i=0;i<sz;++i){
Edge e=edges[G[u][i]];
if(e.cap>0&&d[e.to]>d[u]+e.cost){
a[e.to]=G[u][i];
d[e.to]=d[u]+e.cost;
flow2[e.to]=min(flow2[u],e.cap);
if(!inq[e.to]){inq[e.to]=1;Q.push(e.to);}
}
} }
if(d[t]==INF||d[t]==0)return 0;
f=flow2[t];
flow+=f;
int u=edges[a[t]].from; edges[a[t]].cap-=f;
edges[a[t]^1].cap+=f;
while(u!=s){
edges[a[u]].cap-=f;
edges[a[u]^1].cap+=f;
u=edges[a[u]].from; }
ans+=(ll)(d[t])*(-1);
return 1;
}
ll maxflow(){
while(SPFA());
return ans;
}
};
int main(){
int siz,k,cnt=0;
MCMF op;
scanf("%d%d",&siz,&k);
n=siz*siz;
for(int i=1;i<=siz;++i)
for(int j=1;j<=siz;++j){
int c;scanf("%d",&c);
++cnt;
op.addedge(cnt,cnt+1,1,-c);
op.addedge(cnt,cnt+1,INF,0);
++cnt;
}
t=cnt;
cnt=0;
for(int i=1;i<=siz;++i)
for(int j=1;j<=siz;++j){
cnt+=2;
if(i+1<=siz)op.addedge(cnt,cnt+(siz*2-1),INF,0);
if(j+1<=siz)op.addedge(cnt,cnt+1,INF,0);
}
s=0;
op.addedge(s,1,k,0);
printf("%lld",op.maxflow());
return 0;
}

  

洛谷P2045 方格取数加强版 最小费用流的更多相关文章

  1. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  2. [洛谷P2045]方格取数加强版

    题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...

  3. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

  4. 洛谷P2045 方格取数加强版(费用流)

    题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次, ...

  5. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  6. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  7. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  8. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  9. 洛谷 P1004 方格取数 【多进程dp】

    题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...

随机推荐

  1. layer-list

    <?xml version="1.0" encoding="utf-8"?> <layer-list xmlns:android=" ...

  2. DB2查看表空间和增加表空间容量

    Db2 connect to xxx Db2 “LIST TABLESPACES SHOW DETAIL” Tablespace ID = 7 Name = TSASNAA Type = Databa ...

  3. C++中static和const关键字的作用

    static关键字至少有下列几个作用: 函数体内static变量的作用范围为该函数体,不同于auto变量,该变量的内存只被分配一次,因此其值在下次调用时仍维持上次的值: 在模块内的static全局变量 ...

  4. Java并发--安全发布对象

    单例模式 懒汉模式:多线程非线程安全,在多线程中,可能会产生多个对象 饿汉模式:线程安全. 类加载的时候初始化,不推荐在构造函数需要做耗时操作的时候使用,因为可能导致类加载缓慢,而且可能初始化后并没有 ...

  5. java简单实现MD5加密

    1.话不多说,直接上代码-----传入字符串,返回加密码 import java.security.MessageDigest; import java.text.NumberFormat; publ ...

  6. JS判断客户端是否是iOS或者Android或者ipad(三)

     *  * @function: 判断浏览器类型是否是Safari.Firefox.ie.chrome浏览器  * @return: true或false  *  */ function isSafa ...

  7. Eclipse中使用GIT将文件还原至上一版本

    GIT将文件还原至上一版本: 选中文件——右击——Replace With——HEAD Revision:

  8. java实验程序基础中的问题总结 java图形化界面

    一,课程中的问题 1,知道程序实现的大体框架,但是不能具体到每一个细节,这需要平时的积累. 2,在不同文件夹中定义的类之间有没有联系,类与类之间可以通过接口相互联系. 3,如何在一个对话框中显示文本, ...

  9. 原生JS中 callback,promise,generator,async-await 的简介

    callback,promise,generator,async-await 的简介 javascript异步的发展历程. ES6 以前: 回调函数(callback):nodejs express ...

  10. SELECT使用子查询

    SELECT使用子查询   SELECT使用子查询,该子查询会执行多次,  次数是由记录数量决定.效率比较低,不推荐使用.  //查询部门编号,工资大于等于2000的人数,  //工资小于2000的人 ...