POJ2112 Optimal Milking 【最大流+二分】
| Time Limit: 2000MS | Memory Limit: 30000K | |
| Total Submissions: 12482 | Accepted: 4508 | |
| Case Time Limit: 1000MS | ||
Description
locations are named by ID numbers K+1..K+C.
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
Source
题意:有k台挤奶器,每台挤奶器最多容纳m头奶牛,该牧场共同拥有c头奶牛,如今给定这k台机器和c头奶牛相互间的直接距离,求让全部奶牛到达挤奶器且满足该条件时奶牛走到挤奶器间的最大距离的最小值。
题解:构图:先用Floyd求出相互间的最短距离,然后设置源点到每头牛的距离为1,每台机器到汇点的距离为m,然后若牛到机器的距离不大于maxdist,那么则将该边增加到新图中,最后对新图求最大流,推断最大流是否等于c,就这样二分枚举maxdist直到找到最小的maxdist为止。
#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 235 int dist[maxn][maxn], k, c, m, n;
int G[maxn][maxn], Layer[maxn];
int queue[maxn], maxDist;
bool vis[maxn]; void Floyd() {
int x, i, j;
maxDist = 200;
for(x = 1; x <= n; ++x)
for(i = 1; i <= n; ++i)
for(j = 1; j <= n; ++j)
if(dist[i][j] > dist[i][x] + dist[x][j]) {
dist[i][j] = dist[i][x] + dist[x][j];
if(maxDist < dist[i][j]) maxDist = dist[i][j];
}
} void build(int flow) {
memset(G, 0, sizeof(G));
int i, j;
for(i = k + 1; i <= n; ++i) {
G[0][i] = 1;
for(j = 1; j <= k; ++j)
if(dist[i][j] <= flow)
G[i][j] = 1;
}
for(j = 1; j <= k; ++j)
G[j][n + 1] = m;
} bool countLayer() {
int id = 0, front = 0, now, i;
memset(Layer, 0, sizeof(Layer));
Layer[0] = 1; queue[id++] = 0;
while(front < id) {
now = queue[front++];
for(i = 0; i <= n + 1; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == n + 1) return true;
else queue[id++] = i;
}
}
return false;
} bool Dinic() {
int i, maxFlow = 0, id = 0, now, minCut, pos, u, v;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[0] = 1; queue[id++] = 0;
while(id) {
now = queue[id - 1];
if(now == n + 1) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(id && queue[id - 1] != pos)
vis[queue[--id]] = 0;
} else {
for(i = 0; i <= n + 1; ++i) {
if(G[now][i] && !vis[i] && Layer[now] + 1 == Layer[i]) {
queue[id++] = i;
vis[i] = 1; break;
}
}
if(i > n + 1) --id;
}
}
}
return maxFlow == c;
} int binarySolve() {
int left = 0, right = maxDist, mid;
while(left < right) {
mid = (left + right) >> 1;
build(mid);
if(Dinic()) right = mid;
else left = mid + 1;
}
return left;
} int main() {
//freopen("stdin.txt", "r", stdin);
int i, j;
while(scanf("%d%d%d", &k, &c, &m) == 3) {
for(i = 1, n = k + c; i <= n; ++i)
for(j = 1; j <= n; ++j) {
scanf("%d", &dist[i][j]);
if(!dist[i][j] && i != j)
dist[i][j] = inf;
}
Floyd();
printf("%d\n", binarySolve());
}
return 0;
}
POJ2112 Optimal Milking 【最大流+二分】的更多相关文章
- [USACO2003][poj2112]Optimal Milking(floyd+二分+二分图多重匹配)
http://poj.org/problem?id=2112 题意: 有K个挤奶器,C头奶牛,每个挤奶器最多能给M头奶牛挤奶. 每个挤奶器和奶牛之间都有一定距离. 求使C头奶牛头奶牛需要走的路程的最大 ...
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分
题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ2112 Optimal Milking
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 17811 Accepted: 6368 ...
- POJ2112 Optimal Milking (网络流)(Dinic)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ-2112 Optimal Milking(floyd+最大流+二分)
题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...
- POJ2112 Optimal Milking(最大流)
先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- poj2112 Optimal Milking --- 最大流量,二分法
nx一个挤奶器,ny奶牛,每个挤奶罐为最m奶牛使用. 现在给nx+ny在矩阵之间的距离.要求使所有奶牛挤奶到挤奶正在旅程,最小的个体奶牛步行距离的最大值. 始感觉这个类似二分图匹配,不同之处在于挤奶器 ...
随机推荐
- 关于编译com工程的一些体会
作者:朱金灿 来源:http://blog.csdn.net/clever101 今天发现com的编译的一个重要一步是微软提供的midl工具将其中的idl文件生成一个头文件.c文件(即IID文件)和代 ...
- LayoutAnimation-容器动画
1.LayoutAnimation的作用主要就是加载到一个layout上,让这个layout里面的所有控件都有相同的动画效果.现在用到的是在listview中添加动画,使得它每一个item都是滑落显示 ...
- 解决浏览器不兼容websocket
本例使用tomcat 7.0的websocket做为例子. 1.新建web project.2.找到tomcat 7.0 lib 下的 catalina.jar,tomcat-coyote.jar添加 ...
- 【例题 7-1 UVA - 725】Division
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举分母从0到99999. 得到分子,判断合法 [代码] /* 1.Shoud it use long long ? 2.Have ...
- The Swift Programming Language 中文翻译版
原文(http://www.cnblogs.com/lkvt/p/3765349.html) 一.Welcome to Swift 1.关于Swift Swift是一种用于iOS和OS X应用的全新编 ...
- 设计模式--单例模式之Lock
1.为什么用Lock及关键知识 当我们使用线程的时候,效率最高的方式当然是异步,即个个线程同时运行,其间互不依赖和等待.当不同的线程都需要访问某个资源的时候,就需要同步机制了,也就是说当对同一个资源进 ...
- Linux平台Makefile文件的编写基础篇
目的: 基本掌握了 make 的用法,能在Linux系统上编程. 环境: Linux系统,或者有一台Linux服务器,通过终端连接.一句话:有Linux编译环境. 准备: ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- thinkphp5项目--企业单车网站(九)(加强复习啊)(花了那么多时间写的博客,不复习太浪费了)
thinkphp5项目--企业单车网站(九)(加强复习啊)(花了那么多时间写的博客,不复习太浪费了) 项目地址 fry404006308/BicycleEnterpriseWebsite: Bicyc ...
- 27、从零写UVC驱动之分析数据传输(设置ubuntu通过串口打印,指定打印到文件,ubuntu切换root用户)
A. 设置ubuntu让它从串口0输出printk信息a. 设置vmware添加serial port, 使用文件作为串口(在vmware中设置,文件是保存在windows中)b. 启动ubuntu, ...