POJ2112 Optimal Milking 【最大流+二分】
| Time Limit: 2000MS | Memory Limit: 30000K | |
| Total Submissions: 12482 | Accepted: 4508 | |
| Case Time Limit: 1000MS | ||
Description
locations are named by ID numbers K+1..K+C.
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
Source
题意:有k台挤奶器,每台挤奶器最多容纳m头奶牛,该牧场共同拥有c头奶牛,如今给定这k台机器和c头奶牛相互间的直接距离,求让全部奶牛到达挤奶器且满足该条件时奶牛走到挤奶器间的最大距离的最小值。
题解:构图:先用Floyd求出相互间的最短距离,然后设置源点到每头牛的距离为1,每台机器到汇点的距离为m,然后若牛到机器的距离不大于maxdist,那么则将该边增加到新图中,最后对新图求最大流,推断最大流是否等于c,就这样二分枚举maxdist直到找到最小的maxdist为止。
#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 235 int dist[maxn][maxn], k, c, m, n;
int G[maxn][maxn], Layer[maxn];
int queue[maxn], maxDist;
bool vis[maxn]; void Floyd() {
int x, i, j;
maxDist = 200;
for(x = 1; x <= n; ++x)
for(i = 1; i <= n; ++i)
for(j = 1; j <= n; ++j)
if(dist[i][j] > dist[i][x] + dist[x][j]) {
dist[i][j] = dist[i][x] + dist[x][j];
if(maxDist < dist[i][j]) maxDist = dist[i][j];
}
} void build(int flow) {
memset(G, 0, sizeof(G));
int i, j;
for(i = k + 1; i <= n; ++i) {
G[0][i] = 1;
for(j = 1; j <= k; ++j)
if(dist[i][j] <= flow)
G[i][j] = 1;
}
for(j = 1; j <= k; ++j)
G[j][n + 1] = m;
} bool countLayer() {
int id = 0, front = 0, now, i;
memset(Layer, 0, sizeof(Layer));
Layer[0] = 1; queue[id++] = 0;
while(front < id) {
now = queue[front++];
for(i = 0; i <= n + 1; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == n + 1) return true;
else queue[id++] = i;
}
}
return false;
} bool Dinic() {
int i, maxFlow = 0, id = 0, now, minCut, pos, u, v;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[0] = 1; queue[id++] = 0;
while(id) {
now = queue[id - 1];
if(now == n + 1) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(id && queue[id - 1] != pos)
vis[queue[--id]] = 0;
} else {
for(i = 0; i <= n + 1; ++i) {
if(G[now][i] && !vis[i] && Layer[now] + 1 == Layer[i]) {
queue[id++] = i;
vis[i] = 1; break;
}
}
if(i > n + 1) --id;
}
}
}
return maxFlow == c;
} int binarySolve() {
int left = 0, right = maxDist, mid;
while(left < right) {
mid = (left + right) >> 1;
build(mid);
if(Dinic()) right = mid;
else left = mid + 1;
}
return left;
} int main() {
//freopen("stdin.txt", "r", stdin);
int i, j;
while(scanf("%d%d%d", &k, &c, &m) == 3) {
for(i = 1, n = k + c; i <= n; ++i)
for(j = 1; j <= n; ++j) {
scanf("%d", &dist[i][j]);
if(!dist[i][j] && i != j)
dist[i][j] = inf;
}
Floyd();
printf("%d\n", binarySolve());
}
return 0;
}
POJ2112 Optimal Milking 【最大流+二分】的更多相关文章
- [USACO2003][poj2112]Optimal Milking(floyd+二分+二分图多重匹配)
http://poj.org/problem?id=2112 题意: 有K个挤奶器,C头奶牛,每个挤奶器最多能给M头奶牛挤奶. 每个挤奶器和奶牛之间都有一定距离. 求使C头奶牛头奶牛需要走的路程的最大 ...
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分
题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ2112 Optimal Milking
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 17811 Accepted: 6368 ...
- POJ2112 Optimal Milking (网络流)(Dinic)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ-2112 Optimal Milking(floyd+最大流+二分)
题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...
- POJ2112 Optimal Milking(最大流)
先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- poj2112 Optimal Milking --- 最大流量,二分法
nx一个挤奶器,ny奶牛,每个挤奶罐为最m奶牛使用. 现在给nx+ny在矩阵之间的距离.要求使所有奶牛挤奶到挤奶正在旅程,最小的个体奶牛步行距离的最大值. 始感觉这个类似二分图匹配,不同之处在于挤奶器 ...
随机推荐
- Linux下SPI读写外部寄存器的操作
SPI写寄存器操作: staticvoid mcp251x_write_reg(struct spi_device *spi, uint8_t reg, uint8_t val) { stru ...
- 1.19 Python基础知识 - 软件目录开发规范及不同模块之间的调用
一个软件项目的开发,除了需要很厉害的开发能力,同时在软件开发项目时,也需要对项目结构有良好的组织能力,将功能进行拆分,不同的功能放在不同的目录或文件中,方便日后的维护,升级等操作.比如核心代码的目录, ...
- POJ Fence Repair(优先队列)
Fence Repair Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 51346 Accepted: 16857 De ...
- 原生JavaScript 封装ajax
原生JavaScript 封装ajax function myajax(options){ //新建一个局部对象 用来存放用户输入的各种参数 var opt={ type:options.type ...
- 使用dotcloud免费ssh
使用dotcloud免费ssh https://www.dotcloud.com一个项目在线托管网站,注册后可以免费托管两个项目. 注册帐号,在ubuntu中执行下面命令,安装dotcloud环境 s ...
- python 的 reshape强制转换格式的用途
shu=[[ 0.03046758], [ 0.05485586], [ 0.03282908], [ 0.02107211], [ 0.0391144 ], [ 0.07847244], [ 0.1 ...
- scrapy-爬取斗图
scrapy-爬取斗图代码 <一> 开局三连杀 1.创建run的文件
- 00096_Properties类
1.Properties类介绍 (1)Properties 类表示了一个持久的属性集.Properties 可保存在流中或从流中加载.属性列表中每个键及其对应值都是一个字符串: (2)特点 Hasht ...
- Mycat常见问题与解决方案---宜将剩勇追穷寇,不可沽名学霸王
1 Mycat目前有哪些功能与特性? 答: • 支持 SQL 92标准 • 支持Mysql集群,可以作为Proxy使用 • 支持JDBC连接多数据库 • 支持NoSQL数据库 • 支持galera f ...
- amazeui学习笔记--css(常用组件1)--小徽章Badge
amazeui学习笔记--css(常用组件1)--小徽章Badge 一.总结 1.am-badge:添加am-badge来声明小徽章对象 <span class="am-badge a ...