POJ2112 Optimal Milking 【最大流+二分】
| Time Limit: 2000MS | Memory Limit: 30000K | |
| Total Submissions: 12482 | Accepted: 4508 | |
| Case Time Limit: 1000MS | ||
Description
locations are named by ID numbers K+1..K+C.
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
Source
题意:有k台挤奶器,每台挤奶器最多容纳m头奶牛,该牧场共同拥有c头奶牛,如今给定这k台机器和c头奶牛相互间的直接距离,求让全部奶牛到达挤奶器且满足该条件时奶牛走到挤奶器间的最大距离的最小值。
题解:构图:先用Floyd求出相互间的最短距离,然后设置源点到每头牛的距离为1,每台机器到汇点的距离为m,然后若牛到机器的距离不大于maxdist,那么则将该边增加到新图中,最后对新图求最大流,推断最大流是否等于c,就这样二分枚举maxdist直到找到最小的maxdist为止。
#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 235 int dist[maxn][maxn], k, c, m, n;
int G[maxn][maxn], Layer[maxn];
int queue[maxn], maxDist;
bool vis[maxn]; void Floyd() {
int x, i, j;
maxDist = 200;
for(x = 1; x <= n; ++x)
for(i = 1; i <= n; ++i)
for(j = 1; j <= n; ++j)
if(dist[i][j] > dist[i][x] + dist[x][j]) {
dist[i][j] = dist[i][x] + dist[x][j];
if(maxDist < dist[i][j]) maxDist = dist[i][j];
}
} void build(int flow) {
memset(G, 0, sizeof(G));
int i, j;
for(i = k + 1; i <= n; ++i) {
G[0][i] = 1;
for(j = 1; j <= k; ++j)
if(dist[i][j] <= flow)
G[i][j] = 1;
}
for(j = 1; j <= k; ++j)
G[j][n + 1] = m;
} bool countLayer() {
int id = 0, front = 0, now, i;
memset(Layer, 0, sizeof(Layer));
Layer[0] = 1; queue[id++] = 0;
while(front < id) {
now = queue[front++];
for(i = 0; i <= n + 1; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == n + 1) return true;
else queue[id++] = i;
}
}
return false;
} bool Dinic() {
int i, maxFlow = 0, id = 0, now, minCut, pos, u, v;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[0] = 1; queue[id++] = 0;
while(id) {
now = queue[id - 1];
if(now == n + 1) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(id && queue[id - 1] != pos)
vis[queue[--id]] = 0;
} else {
for(i = 0; i <= n + 1; ++i) {
if(G[now][i] && !vis[i] && Layer[now] + 1 == Layer[i]) {
queue[id++] = i;
vis[i] = 1; break;
}
}
if(i > n + 1) --id;
}
}
}
return maxFlow == c;
} int binarySolve() {
int left = 0, right = maxDist, mid;
while(left < right) {
mid = (left + right) >> 1;
build(mid);
if(Dinic()) right = mid;
else left = mid + 1;
}
return left;
} int main() {
//freopen("stdin.txt", "r", stdin);
int i, j;
while(scanf("%d%d%d", &k, &c, &m) == 3) {
for(i = 1, n = k + c; i <= n; ++i)
for(j = 1; j <= n; ++j) {
scanf("%d", &dist[i][j]);
if(!dist[i][j] && i != j)
dist[i][j] = inf;
}
Floyd();
printf("%d\n", binarySolve());
}
return 0;
}
POJ2112 Optimal Milking 【最大流+二分】的更多相关文章
- [USACO2003][poj2112]Optimal Milking(floyd+二分+二分图多重匹配)
http://poj.org/problem?id=2112 题意: 有K个挤奶器,C头奶牛,每个挤奶器最多能给M头奶牛挤奶. 每个挤奶器和奶牛之间都有一定距离. 求使C头奶牛头奶牛需要走的路程的最大 ...
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分
题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ2112 Optimal Milking
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 17811 Accepted: 6368 ...
- POJ2112 Optimal Milking (网络流)(Dinic)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ-2112 Optimal Milking(floyd+最大流+二分)
题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...
- POJ2112 Optimal Milking(最大流)
先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- poj2112 Optimal Milking --- 最大流量,二分法
nx一个挤奶器,ny奶牛,每个挤奶罐为最m奶牛使用. 现在给nx+ny在矩阵之间的距离.要求使所有奶牛挤奶到挤奶正在旅程,最小的个体奶牛步行距离的最大值. 始感觉这个类似二分图匹配,不同之处在于挤奶器 ...
随机推荐
- linux/unix 基本概念的认识(sha-bang 、PPA)
PPA:Personal Package Archives : Ubuntu: 比如为安装 emacs,需要首先添加某个PPA: sudo add-apt-repository ppa:cassou/ ...
- iTOP-4412开发板p2p视频
整体框架: 一.发送端 1.摄像头通过V4L2接口得到YUV视频格式,可以在win7上用yuvplayer播放 2.使用4412硬件编码模块MFC提供的接口进行硬件编码,得到.264文件,可以在win ...
- ORA-01078错误举例:SID的大写和小写错误
案例重演: dbca建库.SID:metro --手工建库时实例名小写的metro ...... [oracle@org54 ~]$ export ORACLE_SID=METRO ...
- 1.3 Quick Start中 Step 1: Download the code官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ 不要局限于,这个版本,我只是以最新的版本,来做个引子,让大家对官网的各个kafka版 ...
- 分析器错误消息: 此实现不是 Windows 平台 FIPS 验证的加密算法的一部分
关于错误提示:此实现不是 Windows 平台 FIPS 验证的加密算法的一部分的解决方案 不知怎么的,每次Win10升级后相应的注册器都恢复默认了,当我运行08版的asp项目时会报这个错. vs上的 ...
- 关于Promise的详细总结
1. 异步回调 1.1 回调地狱 在需要多个操作的时候,会导致多个回调函数嵌套,导致代码不够直观,就是常说的回调地狱 1.2 并行结果 如果几个异步操作之间并没有前后顺序之分,但需要等多个异步操作都完 ...
- 记一些stl的用法(持续更新)
有些stl不常用真的会忘qwq,不如在这里记下来,以后常来看看 C++中substr函数的用法 #include<string> #include<iostream> usin ...
- 原生js大总结八
071.如何组织事件冒泡 利用事件对象属性:stopPropagation 和 cancelBubble stopPropagetion是一个方法:e.stopPropagetion(); ...
- uvaoj-1595:symmetry
1595 - Symmetry The figure shown on the left is left-right symmetric as it is possible to fold the s ...
- iOS_01_C语言简介
1.先学C语言的原因 * oc基于C. * oc 跟 C的思想和语法很多地方不太一样,而且OC能和C混用. * C 是所有编程语言中的经典,很多高级语言都是从C语言中衍生出来的,比如 C++,C#.O ...