Batch Normalization的算法本质是在网络每一层的输入前增加一层BN层(也即归一化层),对数据进行归一化处理,然后再进入网络下一层,但是BN并不是简单的对数据进行求归一化,而是引入了两个参数λ和β去进行数据重构
Batch Normalization
Batch Normalization是深度学习领域在2015年非常热门的一个算法,许多网络应用该方法进行训练,并且取得了非常好的效果。
众所周知,深度学习是应用随机梯度下降法对网络进行训练,尽管随机梯度下降训练神经网络非常有效,但是它有一个缺点,就是需要人为的设定很多参数,比如学习率,权重衰减系数,Dropout比例等。这些参数的选择对训练结果至关重要,以至于训练的大多数精力都耗费在了调参上面。BN算法就可以完美的解决这些问题。
当我们使用了BN算法,我们可以去选择比较大的初始学习率,这样就会加快学习的速度;我们还可以不必去理会过拟合中的dropout、正则项约束问题等,因为BN算法可以提高网络的泛化能力;我们再也不需要使用局部响应归一化层,因为BN本身就是归一化的网络;还可以打乱训练数据,防止每批训练的时候,某一个样本经常被选到。
通常在训练神经网络之前,我们都会对数据进行归一化处理,为什么呢?因为神经网络训练实际是为了学习数据的分布情况,一旦训练数据与测试数据分布不同,那么网络的泛化能力也会大大降低。另外,如果每一批的训练数据都不同,那么神经网络就会去适应不同训练数据的分布,这样就会大大降低网络训练的速度。
深度学习的训练是一个复杂的过程,如果前几层的数据分布发生了变化,那么后面就会积累下去,不断放大,这样就会导致神经网络在训练过程中不断适应新的数据分布,影响网络训练的速度。
但是在网络训练的过程中,参数会不断的调整,除了输入层数据之外,后面网络每一层的输入分布在不断变化的(因为后面层的输入时前面层的输出,前面层的参数调整了,后面层的输入数据分布就会发生变化)。这样就会降低网络训练的速度。因此,BN算法就被提出。
BN的算法本质是在网络每一层的输入前增加一层BN层(也即归一化层),对数据进行归一化处理,然后再进入网络下一层,但是BN并不是简单的对数据进行求归一化,而是引入了两个参数λ和β去进行数据重构,具体公式如下:
那么为什么要引入这两个参数呢?因为网络中某一层学习到的特征本来就在S型函数两端,如果强行进行归一化处理,那么就会破坏这一层中学到的特征。而加入了这两个参数,可以将学到的特征重新映射回原来的网络所学习到的特征分布,因此不会破坏原来学到的特征。
实验表明,Batch Normalization效果惊人的好,训练速度可以达到原来的十倍以上。
Batch Normalization的算法本质是在网络每一层的输入前增加一层BN层(也即归一化层),对数据进行归一化处理,然后再进入网络下一层,但是BN并不是简单的对数据进行求归一化,而是引入了两个参数λ和β去进行数据重构的更多相关文章
- 【转载】 详解BN(Batch Normalization)算法
原文地址: http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce ------------------------------- ...
- 深度学习之Batch Normalization
在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差.而在深层神经网络的训练中,当中间神经层的前一层参数 ...
- Batch Normalization 学习笔记
原文:http://blog.csdn.net/happynear/article/details/44238541 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他 ...
- 优化深度神经网络(三)Batch Normalization
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparam ...
- 激活函数,Batch Normalization和Dropout
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神 ...
- deeplearning.ai 改善深层神经网络 week3 超参数调试、Batch Normalization和程序框架
这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4* ...
- Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换
批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...
- 从Bayesian角度浅析Batch Normalization
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhih ...
- Batch Normalization
一.BN 的作用 1.具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2.具有提高网络泛化能力的特性:不用去理会过拟合中drop out.L2正则项参数的选择问题 3.不需要 ...
随机推荐
- 几道leetcode不会做的题目
1.set没有back()函数,今天想到用这个,才发现没有. 2. tuple的initialize_list construct好像不能使用,其实之前没使用过tuple,都是pair,复杂一点的自己 ...
- A - I Wanna Be the Guy
Problem description There is a game called "I Wanna Be the Guy", consisting of n levels. L ...
- Elasticsearch之curl创建索引库和索引时注意事项
前提, Elasticsearch之curl创建索引库 Elasticsearch之curl创建索引 注意事项 1.索引库名称必须要全部小写,不能以下划线开头,也不能包含逗号 2.如果没有明确指定索引 ...
- ADO.NET增删改
static void Main1(string[] args) {添加造连接字符串string connstring = "server=.;database=mydb;user=sa;p ...
- 如何在Hexo中实现自适应响应式相册功能
用最清晰简洁的方法整合一个响应式相册 效果 技术选型 由于我选用的主题使用了fancyBox作为图片弹出展示的框架,查看后表示很不错,能满足需要 http://fancyapps.com/fancyb ...
- Spark Streaming 整合 Kafka
一:通过设置检查点,实现单词计数的累加功能 object StatefulKafkaWCnt { /** * 第一个参数:聚合的key,就是单词 * 第二个参数:当前批次产生批次该单词在每一个分区出现 ...
- APP开发过程的优惠券设计及流程
在整个APP开发产品发展的整个周期中,运营活动必不可少,而发放优惠券已成为运营活动的一种基本形式,而关于优惠券设计的整体流程尤为重要.接下来,常州开发APP公司专家分享一下自己的经验,希望对大家有帮助 ...
- 百度map API
1.做demo用的 http://developer.baidu.com/map/jsdemo.htm demo代码(外部使用的话需要提供密钥): <!DOCTYPE html> < ...
- JS 100以内的质数、只能被1和自己整除
for(var i = 2;i <= 100;i++){ var biao = 1; for(var j = 2;j < i;j++){ if(i%j == 0){ biao = 0; } ...
- 路飞学城Python-Day181
Evernote Export Nginx默认网站 当Nginx配置文件中有且仅有一个Server的时候,该Server就被Nginx认为是默认网站,所有发给Nginx服务器80端口的数据都会默认给s ...