E-triples II_2019牛客暑期多校训练营(第四场)

求用n个3的倍数的数按位或出数字a的方案数有多少种(0也算3的倍数)
题解
- 若数b的每个二进制位上的1,在a中也为1,则称b为a的子集
- 容易知道任意个a的子集按位或出来的结果还是a的子集
- 若问题改为按位或出来的结果是a的子集的方案数,那么答案就是a的子集中是3的倍数的子集个数的n次方
接着我们对子集按二进制上的1 mod 3的个数划分,例如1101有两个1mod3=1, 一个1mod3 = 2,设\(S[i][j]\)表示a的子集中有i个mod3=1,j个mod3=2的子集的子集 中是3的倍数的个数,例如a = 1101的一个子集1001表示的状态为\(S[1][1]\), 1001的子集中是3的倍数的有1001和0000所以\(S[1][1] = 2\),那么\(S[i][j]\)的n次方就可以表示为用n个3的倍数的数按位或出来的结果的状态是S[i][j]的子集方案数
那么\(\sum_{i=1}^kS[i][k-i]\)就表示或出来的结果最多匹配上a中K个1的方案数,那么我们就可以用最多匹配上a中K个1的方案数,减去匹配上a中K-1个1的方案数得出答案,但是这样简单的相减是不行的因为\(S[i][k-i]\)的子集是会有重叠的,会多扣掉最多匹配k-2个1的方案数,根据容斥原理应当减去最多匹配K-1的方案数,加上最多匹配K-2的方案数,扣掉K-3加上K-4...
代码
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int mx = 65;
const ll mod = 998244353;
int C[mx][mx], S[mx][mx];
ll pow_mod(ll a, ll b) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a % mod;
a = a * a % mod;
b /= 2;
}
return ans;
}
int main() {
C[0][0] = 1;
for (int i = 1; i < mx; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++) {
C[i][j] = (C[i-1][j-1] + C[i-1][j]) % mod;
}
}
for (int i = 0; i < mx; i++) {
for (int j = 0; j < mx; j++) {
for (int p = 0; p <= i; p++) {
for (int q = 0; q <= j; q++) {
if ((p + 2*q) % 3 != 0) continue;
S[i][j] += C[i][p] * C[j][q] % mod;
S[i][j] %= mod;
}
}
}
}
S[0][0] = 1;
int T;
scanf("%d", &T);
while (T--) {
ll n, a, x = 0, y = 0;
scanf("%lld%lld", &n, &a);
for (int i = 0; i < 64; i++) {
if (a & (1LL<<i)) {
if (i % 2 == 0) x++;
else y++;
}
}
ll ans = 0;
for (int i = 0; i <= x; i++) {
for (int j = 0; j <= y; j++) {
ll tmp = C[x][i] * C[y][j] % mod * pow_mod(S[i][j], n) % mod;
if ((x+y-i-j) % 2) tmp *= -1;
ans = (ans + tmp) % mod;
}
}
ans = (ans + mod) % mod;
printf("%lld\n", ans);
}
return 0;
}
E-triples II_2019牛客暑期多校训练营(第四场)的更多相关文章
- 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)
题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9: 对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可. 后者mod=1e9,5才 ...
- 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)
链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...
- 2019牛客暑期多校训练营(第一场) B Integration (数学)
链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...
- 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)
链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...
- 2019牛客暑期多校训练营(第二场)F.Partition problem
链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...
- 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)
链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...
- [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem
链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...
- 2019牛客暑期多校训练营(第二场)J-Subarray(思维)
>传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...
- J-Subarray_2019牛客暑期多校训练营(第二场)
题意 有一个只由1,-1组成的数组,给出所有连续的1所在位置,求满足1的个数大于-1的个数的子区间的数量 题解 参考博客:https://www.cnblogs.com/Yinku/p/1122149 ...
随机推荐
- Python版:Selenium2.0之WebDriver学习总结_实例1
Python版:Selenium2.0之WebDriver学习总结_实例1 快来加入群[python爬虫交流群](群号570070796),发现精彩内容. 实属转载:本人看的原文地址 :http:/ ...
- spark 源码分析之二十二-- Task的内存管理
问题的提出 本篇文章将回答如下问题: 1. spark任务在执行的时候,其内存是如何管理的? 2. 堆内内存的寻址是如何设计的?是如何避免由于JVM的GC的存在引起的内存地址变化的?其内部的内存缓存 ...
- 【Git】Found a swap file by the name ".git/.MERGE_MSG.swp"
最近合并分支的时候总是遇到这个问题,导致合并之后还需要再提交一次--有点烦-- 解决方案: 在项目根目录(如/StudioProjects/demo/Leave)下,找到 .git/.MERGE_MS ...
- JAVA基础——Switch条件语句
JAVA基础——switch 条件语句 switch语句结构: switch(表达式){ case值1: 语句体1: break: case值2: 语句体2: break: case值3: 语句体3: ...
- ASP.NET Web项目发布选项:“允许更新此预编译站点” 详解
目录 #使用visual studio 发布web项目 #"允许更新此预编译站点" 选项的意义 1.选中 "允许更新此预编译站点" 2.不选中 "允许 ...
- (数据科学学习手札66)在ubuntu服务器上部署shiny
一.简介 shiny是R中专门用于开发轻量级web应用的框架,在本地写一个shiny应用并调用非常方便,但如果你希望你的shiny应用能够以远程的方式提供给更多人来使用,就需要将写好的shiny应用部 ...
- Java基础的一些知识点(一):接口interface
1.接口的含义 接口可以理解成统一的协议, 而接口中的属性也属于协议中的内容.但是接口的属性都是公共的,静态的,最终的. 接口的成员特点: 1.成员变量只能是常量,默认修饰符 public stati ...
- QMS 的趨勢概述
自泰勒Taylor提出的科学管理被奉行后,制造业的分工已然成形,而产品不再是由工匠单独负责完成.为确保产品的质量,产品在完工后的检验为确保瑕疵品不外流出给客户的必要关卡.然而当产品依靠检验结果并无法减 ...
- 腾讯PCG(后台开发) 牛客网视频面试 一面
腾讯视频面试 作为一个小渣渣记录一下,腾讯是我一直想进的公司,但其实准备的时间不是很长,也不是科班还是存在很大的劣势,记录一下找工作的经历. 首先说一下,这是我第一次视频面试,还是蛮紧张的.不过面试官 ...
- ALTER TABLE permission is required on the target table of a bulk copy operation if the table has triggers or check constraints, but 'FIRE_TRIGGERS' or 'CHECK_CONSTRAINTS' bulk hints are not specified
这个是使用SqlBulkCopy进行批量复制导致的异常,此问题涉及大容量导入数据时,控制大容量导入操作是否执行(触发)触发器.大容量导入操作应只对包含支持多行插入的 INSERT 和 INSTEAD ...