通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题:当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。

一、多进程抢占输出资源

import os
import time
import random
from multiprocessing import Process def work(n):
print('%s: %s is running' %(n,os.getpid()))
time.sleep(random.random())
print('%s:%s is done' %(n,os.getpid())) if __name__ == '__main__':
for i in range(3):
p=Process(target=work,args=(i,))
p.start()

二、使用锁维护执行顺序

# 由并发变成了串行,牺牲了运行效率,但避免了竞争
import os
import time
import random
from multiprocessing import Process,Lock def work(lock,n):
lock.acquire()
print('%s: %s is running' % (n, os.getpid()))
time.sleep(random.random())
print('%s: %s is done' % (n, os.getpid()))
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(3):
p=Process(target=work,args=(lock,i))
p.start()

上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。

接下来,我们以模拟抢票为例,来看看数据安全的重要性。

三、多进程同时抢购余票

# 文件db的内容为:{"count":1}
# 注意一定要用双引号,不然json无法识别
# 并发运行,效率高,但竞争写同一文件,数据写入错乱
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db'))
print('剩余票数%s' %dic['count']) def get():
dic=json.load(open('db'))
time.sleep(0.1) # 模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(0.2) # 模拟写数据的网络延迟
json.dump(dic,open('db','w'))
print('购票成功') def task():
search()
get() if __name__ == '__main__':
for i in range(100): # 模拟并发100个客户端抢票
p=Process(target=task)
p.start()

四、使用锁来保证数据安全

# 文件db的内容为:{"count":5}
# 注意一定要用双引号,不然json无法识别
# 并发运行,效率高,但竞争写同一文件,数据写入错乱
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db'))
print('剩余票数%s' %dic['count']) def get():
dic=json.load(open('db'))
time.sleep(random.random()) # 模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(random.random()) # 模拟写数据的网络延迟
json.dump(dic,open('db','w'))
print('购票成功')
else:
print('购票失败') def task(lock):
search()
lock.acquire()
get()
lock.release() if __name__ == '__main__':
lock = Lock()
for i in range(100): # 模拟并发100个客户端抢票
p=Process(target=task,args=(lock,))
p.start()

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。

虽然可以用文件共享数据实现进程间通信,但问题是:

  1. 效率低(共享数据基于文件,而文件是硬盘上的数据)
  2. 需要自己加锁处理

因此我们最好找寻一种解决方案能够兼顾:

  1. 效率高(多个进程共享一块内存的数据)
  2. 帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。

队列和管道都是将数据存放于内存中,队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

Python程序中的进程操作-进程同步(multiprocess.Lock)的更多相关文章

  1. Python程序中的进程操作-进程间通信(multiprocess.Queue)

    目录 一.进程间通信 二.队列 2.1 概念介绍--multiprocess.Queue 2.1.1 方法介绍 2.1.2 其他方法(了解) 三.代码实例--multiprocess.Queue 3. ...

  2. 在Python程序中的进程操作,multiprocess.Process模块

    在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起 ...

  3. python 全栈开发,Day38(在python程序中的进程操作,multiprocess.Process模块)

    昨日内容回顾 操作系统纸带打孔计算机批处理 —— 磁带 联机 脱机多道操作系统 —— 极大的提高了CPU的利用率 在计算机中 可以有超过一个进程 进程遇到IO的时候 切换给另外的进程使用CPU 数据隔 ...

  4. Python程序中的进程操作--—--开启多进程

    Python程序中的进程操作-----开启多进程 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创 ...

  5. 29、Python程序中的进程操作(multiprocess.process)

    一.multiprocess模块 multiprocess不是一个模块而是python中一个操作.管理进程的包. 子模块分为四个部分: 创建进程部分 进程同步部分 进程池部分 进程之间数据共享 二.m ...

  6. 在python程序中的进程操作

    multiprocess模块 multiprocess不是一个模块而是python中一个操作.管理进程的包. 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所 ...

  7. Python程序中的进程操作-开启多进程(multiprocess.process)

    目录 一.multiprocess模块 二.multiprocess.process模块 三.process模块介绍 3.1 方法介绍 3.2 属性介绍 3.3 在windows中使用process模 ...

  8. Python程序中的进程操作-进程池(multiprocess.Pool)

    目录 一.进程池 二.概念介绍--multiprocess.Pool 三.参数用法 四.主要方法 五.其他方法(了解) 六.代码实例--multiprocess.Pool 6.1 同步 6.2 异步 ...

  9. Python程序中的进程操作

    之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起来的python程序也是一个进程 ...

随机推荐

  1. mongo [initandlisten] exception in initAndListen: 98 Unable to create/open lock file: /data/db/mongod.lock errno:13 Permission denied Is a mongod instance already running?, terminating 2019-09-23T16:

    解决方法: 加权 sudo chmod -Rf 777 /data/db

  2. Cesium专栏-卫星轨迹

    Cesium Cesium 是一款面向三维地球和地图的,世界级的JavaScript开源产品.它提供了基于JavaScript语言的开发包,方便用户快速搭建一款零插件的虚拟地球Web应用,并在性能,精 ...

  3. 使用Python轻松批量压缩图片

    在互联网,图片的大小对一个网站的响应速度有着明显的影响,因此在提供用户预览的时候,图片往往是使用压缩后的.如果一个网站图片较多,一张张压缩显然很浪费时间.那么接下来,我就跟大家分享一个批量压缩图片的方 ...

  4. 打通 DevOps 任督二脉 ,CODING 2.0 制品库全新上线

    CODING 在近期的 KubeCon 2019 大会上发布了 CODING 2.0,同时发布了最新功能--制品库.CODING 不断完善 DevOps 工具链,旨在持续提升研发组织软件交付的速度与质 ...

  5. Linux tree

    tree命令,是大小写敏感的.常用的是:1.tree -C 颜色显示 2.tree -f 显示文件全路径ls -R也可以显示树结构,但没上面 清晰 3.tree -L n n 是数字,表示显示几层 4 ...

  6. Samba安装及配置

    samba 可以实现Windows对Windows . Windows对Linux.Linux对Linux的文件传输 在centos7安装samba yum install samba 启动samba ...

  7. java之工厂方法设计模式

    工厂方法模式是设计模式中应用最广泛的模式.在面向对象的编程中,对象的创建工作非常简单,对象的创建时机却很重要.工厂方法模式就是解决这个问题,它通过面向对象的手法,将所要创建的具体对象创建工作延迟到了子 ...

  8. SpringData JPA实现增删改

    一.创建实体类并自动生成数据库表 二.dao层继承JpaRepository 三.controller中增加操作 四.controller中删除操作 五.controller中修改操作

  9. Leetcode题解 - BFS部分题目代码+思路(896、690、111、559、993、102、103、127、433)

    和树有关的题目求深度 -> 可以利用层序遍历 -> 用到层序遍历就想到使用BFS 896. 单调数列 - 水题 class Solution: def isMonotonic(self, ...

  10. C语言结构选择语句

    总结一下常用的if else与switch,其中switch中的break知识点是笔试题经常考到的内容. if else与else if 在C语言中,经常使用if else选择语句,来实现很多对应的功 ...