【数据结构】之二叉树(Java语言描述)
有关树的一些基础知识点请参考【这篇文章】。
本文主要记录Java语言描述的二叉树相关的一些操作,如创建、遍历等。
首先,我们需要一个表示树中节点的数据结构TreeNode,代码如下:
public class TreeNode<T> {
public T data;
public TreeNode<T> lChild;
public TreeNode<T> rChild;
public TreeNode<T> parent; public TreeNode() {
} public TreeNode(T data) {
this.data = data;
this.lChild = null;
this.rChild = null;
this.parent = null;
} public TreeNode(T data, TreeNode<T> parent, boolean isLeftC) {
this.data = data;
this.parent = parent;
if (isLeftC) {
parent.lChild = this;
} else {
parent.rChild = this;
}
}
}
在二叉树的工具类BinaryTree中,提供了很多的方法,详细介绍如下:
(1)创建二叉树的时候,通过传入的字符串来自动生成二叉树的结构。注意:字符串是前序遍历的结构,每个节点都有左右两个节点,如果某个节点为空,则用“#”符号表示;节点与节点之间用空格隔开。
(2)使用递归和非递归的方式进行二叉树的前、中、后序遍历的方法。
(3)对二叉树进行层序遍历的方法。
(4)获取树的深度和树中节点总数的方法。
以下是BinaryTree类中的详细代码:
public class BinaryTree {
private TreeNode<String> root;
private int size; // 根据初始化字符串生成二叉树
public BinaryTree(String content) {
root = createBTree(new Scanner(content));
} // 直接将一棵TreeNode树赋值为二叉树
public BinaryTree(TreeNode<String> root) {
this.root = root;
} // 根据字符串创建二叉树
private TreeNode<String> createBTree(Scanner scanner) {
String data = scanner.next();
if ("#".equals(data)) return null;
TreeNode<String> node = new TreeNode<>(data);
size++;
node.lChild = createBTree(scanner);
node.rChild = createBTree(scanner);
return node;
} // 获取二叉树的深度
public int getBTreeDepth() {
return getBTreeDepth(root);
} private int getBTreeDepth(TreeNode root) {
return root == null ? 0 : Math.max(getBTreeDepth(root.lChild), getBTreeDepth(root.rChild)) + 1;
} // 返回二叉树中节点个数
public int size() {
return size;
} // 前序遍历二叉树(useRec:是否使用递归方式)
public void traverseBefore(boolean useRec) {
if (useRec) {
traverseBeforeRec(root);
} else {
traverseBeforeNonRec();
}
} // 前序遍历二叉树(递归)
private void traverseBeforeRec(TreeNode node) {
if (node == null) {
System.out.print("#");
} else {
System.out.print(node.data);
traverseBeforeRec(node.lChild);
traverseBeforeRec(node.rChild);
}
} // 前序遍历二叉树(非递归)
private void traverseBeforeNonRec() {
Stack<TreeNode<String>> stack = new Stack<>();
TreeNode<String> currRoot = root;
while (true) {
if (currRoot != null) {
System.out.print(currRoot.data);
stack.push(currRoot.rChild);
currRoot = currRoot.lChild;
} else {
System.out.print("#");
if (stack.size() == 0) break;
currRoot = stack.pop();
}
}
} // 中序遍历二叉树
public void traverseMiddle(boolean useRec) {
if (useRec) {
traverseMiddleRec(root);
} else {
traverseMiddleNonRec();
}
} // 中序遍历二叉树(递归)
private void traverseMiddleRec(TreeNode node) {
if (node == null) {
System.out.print("#");
} else {
traverseMiddleRec(node.lChild);
System.out.print(node.data);
traverseMiddleRec(node.rChild);
}
} // 中序遍历二叉树(非递归)
private void traverseMiddleNonRec() {
Stack<TreeNode<String>> stack = new Stack<>();
TreeNode<String> currRoot = root;
while (true) {
if (currRoot != null) {
stack.push(currRoot);
currRoot = currRoot.lChild;
} else {
System.out.print("#");
if (stack.size() == 0) break;
TreeNode<String> middleNode = stack.pop();
System.out.print(middleNode.data);
currRoot = middleNode.rChild;
}
}
} // 后序遍历二叉树
public void traverseAfter(boolean useRec) {
if (useRec) {
traverseAfterRec(root);
} else {
traverseAfterNonRec();
}
} // 后序遍历二叉树(递归)
private void traverseAfterRec(TreeNode node) {
if (node == null) {
System.out.print("#");
} else {
traverseAfterRec(node.lChild);
traverseAfterRec(node.rChild);
System.out.print(node.data);
}
} // 后序遍历二叉树(非递归)
private void traverseAfterNonRec() {
Stack<TreeNode<String>> stack = new Stack<>();
TreeNode<String> lastNode = null;
TreeNode<String> currRoot = root;
while (true) {
if (currRoot != null) {
if (lastNode != null && currRoot.rChild == lastNode) {
System.out.print(currRoot.data);
lastNode = currRoot;
currRoot = stack.peek().rChild;
if (root.rChild == currRoot && currRoot == lastNode) {
System.out.print(root.data);
break;
}
} else if (lastNode != null && currRoot.lChild == lastNode) {
if (currRoot.rChild == null) {
System.out.print("#" + currRoot.data);
lastNode = currRoot;
currRoot = stack.pop();
}
} else {
stack.push(currRoot);
currRoot = currRoot.lChild;
}
} else {
System.out.print("#");
currRoot = stack.peek().rChild;
if (currRoot == null) {
System.out.print("#");
lastNode = stack.pop();
System.out.print(lastNode.data);
currRoot = stack.pop();
}
}
}
} // 层序遍历二叉树
public void traverseCeng() {
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (node == null) {
System.out.print("#");
} else {
System.out.print(node.data);
queue.offer(node.lChild);
queue.offer(node.rChild);
}
}
}
}
测试类代码:
public class TestTree {
private static final String TREE_CONTENT = "A B D # G # # E # # C # F H # # #"; public static void main(String args[]) {
System.out.println("根据字符串" + TREE_CONTENT + "生成二叉树");
BinaryTree bTree = new BinaryTree(TREE_CONTENT); System.out.print("二叉树前序遍历结果:");
bTree.traverseBefore(false); System.out.print("\n二叉树中序遍历结果:");
bTree.traverseMiddle(false); System.out.print("\n二叉树后序遍历结果:");
bTree.traverseAfter(false); System.out.print("\n二叉树层序遍历结果:");
bTree.traverseCeng(); System.out.println("\n二叉树深度:" + bTree.getBTreeDepth()); System.out.println("二叉树中节点个数:" + bTree.size());
}
}
运行结果:
根据字符串A B D # G # # E # # C # F H # # #生成二叉树
二叉树前序遍历结果:ABD#G##E##C#FH###
二叉树中序遍历结果:#D#G#B#E#A#C#H#F#
二叉树后序遍历结果:###G##E###HFC
二叉树层序遍历结果:ABCDE#F#G##H#####
二叉树深度:4
二叉树中节点个数:8
【数据结构】之二叉树(Java语言描述)的更多相关文章
- 数据结构与抽象 Java语言描述 第4版 pdf (内含标签)
数据结构与抽象 Java语言描述 第4版 目录 前言引言组织数据序言设计类P.1封装P.2说明方法P.2.1注释P.2.2前置条件和后置条件P.2.3断言P.3Java接口P.3.1写一个接口P.3. ...
- 《数据结构与算法分析-Java语言描述》 分享下载
书籍信息 书名:<数据结构与算法分析-Java语言描述> 原作名:Data Structures and Algorithm Analysis in Java 作者: 韦斯 (Mark A ...
- 读书笔记:《数据结构与算法分析Java语言描述》
目录 第 3 章 表.栈和队列 3.2 表 ADT 3.2.1 表的简单数组实现 3.2.2 简单链表 3.3 Java Collections API 中的表 3.3.1 Collection 接口 ...
- 数据结构(java语言描述)
概念性描述与<数据结构实例教程>大同小异,具体参考:http://www.cnblogs.com/bookwed/p/6763300.html. 概述 基本概念及术语 数据 信息的载体,是 ...
- 数据结构(Java语言描述)-第一章:概述
第一章 概述 1.0 序言 自己为啥要学数据结构嘞,我觉得主要有以下三个原因: 前段时间在看并发编程时,发现aqs,corrunthashmap等底层都用到了数据结构,主要的有队列,还有链表,学习数据 ...
- C语言学习书籍推荐《数据结构与算法分析:C语言描述(原书第2版)》下载
维斯 (作者), 冯舜玺 (译者) <数据结构与算法分析:C语言描述(原书第2版)>内容简介:书中详细介绍了当前流行的论题和新的变化,讨论了算法设计技巧,并在研究算法的性能.效率以及对运行 ...
- 数据结构与算法分析——C语言描述 第三章的单链表
数据结构与算法分析--C语言描述 第三章的单链表 很基础的东西.走一遍流程.有人说学编程最简单最笨的方法就是把书上的代码敲一遍.这个我是头文件是照抄的..c源文件自己实现. list.h typede ...
- 三元组表压缩存储稀疏矩阵实现稀疏矩阵的快速转置(Java语言描述)
三元组表压缩存储稀疏矩阵实现稀疏矩阵的快速转置(Java语言描述) 用经典矩阵转置算法和普通的三元组矩阵转置在时间复杂度上都是不乐观的.快速转置算法在增加适当存储空间后实现快速转置具体原理见代码注释部 ...
- 利用栈实现算术表达式求值(Java语言描述)
利用栈实现算术表达式求值(Java语言描述) 算术表达式求值是栈的典型应用,自己写栈,实现Java栈算术表达式求值,涉及栈,编译原理方面的知识.声明:部分代码参考自茫茫大海的专栏. 链栈的实现: pa ...
随机推荐
- Flask:对项目文件进行拆分
在工作中,我们不可能将ORM的配置,ORM的操作,ORM的使用以及视图放到同一个文件里,大多数时候Flask都是按照MVC的设计理念进行部署的 1.MVC和MTV (1)MVC(Model-View- ...
- C++学习笔记5_智能指针
1. 一般的指针int main(void){ int *p=new int; *p=20; delete p; return 0;}智能指针能自动回收#include<memory> 记 ...
- Numpy 中的比较和 Fancy Indexing
# 导包 import numpy as np Fancy Indexing 应用在一维数组 x = np.arange(16) x[3] x[3:9] # array([3, 4, 5, 6, 7, ...
- [Luogu5384][Cnoi2019] 雪松果树
传送门 虽然这题是一道二合一,也不算难,但还是学到了很多东西啊,\(k\) 级儿子个数的五种求法!!我还是觉得四种比较好( \(k\) 级儿子个数有五种求法,你知道么? --鲁迅 首先 \(k\) 级 ...
- 『题解』Coderforces352A Jeff and Digits
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Jeff's got n cards, each card contains ...
- 模块参数,系统调用,字符设备编程重要数据结构,设备号的申请与注册,关于cdev的API
1.模块参数 应用编程: int main(int argc, char *argv[]) { } ./a.out xxx yyy zzz ...
- day-5元组专区
*元组,元素不可被修改,不能被增加或者删除tupletu = (11,22,33,44)tu.count(22),获取指定元素在元组中出现的次数tu.index(22),索引22在元组中位置(左到右第 ...
- .NET进阶篇06-async异步、thread多线程2
知识需要不断积累.总结和沉淀,思考和写作是成长的催化剂 内容目录 一.线程Thread1.生命周期2.后台线程3.静态方法1.线程本地存储2.内存栅栏4.返回值二.线程池ThreadPool1.工作队 ...
- 极·Java速成教程 - (1)
序言 众所周知,程序员需要快速学习新知识,所以就有了<21天精通C++>和<MySQL-从删库到跑路>这样的书籍,Java作为更"高级"的语言也不应该落后, ...
- 二.整体预览tomcat
一.概述 如果将tomcat内核高度抽象,则它可以看成由连接器(Connector)组件和容器(Container)组件组成,其中Connector组件负责在服务器端处理客户端链接,包括接受客户端链接 ...