前言
文章要求读者熟悉 JVM 内置的通用垃圾回收原则。堆内存划分为 Eden、Survivor 和 Tenured/Old 空间,代假设和其他不同的 GC 算法超出了本文讨论的范围。
Minor GC
从年轻代空间(包括 Eden 和 Survivor 区域)回收内存被称为 Minor GC。这一定义既清晰又易于理解。但是,当发生Minor GC事件的时候,有一些有趣的地方需要注意到:
1、当 JVM 无法为一个新的对象分配空间时会触发 Minor GC,比如当 Eden 区满了。所以分配率越高,越频繁执行 Minor GC。
2、内存池被填满的时候,其中的内容全部会被复制,指针会从0开始跟踪空闲内存。Eden 和 Survivor 区进行了标记和复制操作,取代了经典的标记、扫描、压缩、清理操作。所以 Eden 和 Survivor 区不存在内存碎片。写指针总是停留在所使用内存池的顶部。
3、执行 Minor GC 操作时,不会影响到永久代。从永久代到年轻代的引用被当成 GC roots,从年轻代到永久代的引用在标记阶段被直接忽略掉。
4、质疑常规的认知,所有的 Minor GC 都会触发“全世界的暂停(stop-the-world)”,停止应用程序的线程。对于大部分应用程序,停顿导致的延迟都是可以忽略不计的。其中的真相就 是,大部分 Eden 区中的对象都能被认为是垃圾,永远也不会被复制到 Survivor 区或者老年代空间。如果正好相反,Eden 区大部分新生对象不符合 GC 条件,Minor GC 执行时暂停的时间将会长很多。
所以 Minor GC 的情况就相当清楚了——每次 Minor GC 会清理年轻代的内存。
Major GC vs Full GC
大家应该注意到,目前,这些术语无论是在 JVM 规范还是在垃圾收集研究论文中都没有正式的定义。但是我们一看就知道这些在我们已经知道的基础之上做出的定义是正确的,Minor GC 清理年轻带内存应该被设计得简单:
  • Major GC 是清理老年代。
  • Full GC 是清理整个堆空间—包括年轻代和老年代。
很不幸,实际上它还有点复杂且令人困惑。首先,许多 Major GC 是由 Minor GC 触发的,所以很多情况下将这两种 GC 分离是不太可能的。另一方面,许多现代垃圾收集机制会清理部分永久代空间,所以使用“cleaning”一词只是部分正确。
这使得我们不用去关心到底是叫 Major GC 还是 Full GC,大家应该关注当前的 GC 是否停止了所有应用程序的线程,还是能够并发的处理而不用停掉应用程序的线程。
这种混乱甚至内置到 JVM 标准工具。下面一个例子很好的解释了我的意思。让我们比较两个不同的工具 Concurrent Mark 和 Sweep collector (-XX:+UseConcMarkSweepGC)在 JVM 中运行时输出的跟踪记录。
第一次尝试通过 jstat 输出:
my-precious: me$ jstat -gc -t 4235 1sTime S0C S1C S0U S1U EC EU OC OU MC MU CCSC CCSU YGC YGCT FGC FGCT GCT 5.7 34048.0 34048.0 0.0 34048.0 272640.0 194699.7 1756416.0 181419.9 18304.0 17865.1 2688.0 2497.6 3 0.275 0 0.000 0.275 6.7 34048.0 34048.0 34048.0 0.0 272640.0 247555.4 1756416.0 263447.9 18816.0 18123.3 2688.0 2523.1 4 0.359 0 0.000 0.359 7.7 34048.0 34048.0 0.0 34048.0 272640.0 257729.3 1756416.0 345109.8 19072.0 18396.6 2688.0 2550.3 5 0.451 0 0.000 0.451 8.7 34048.0 34048.0 34048.0 34048.0 272640.0 272640.0 1756416.0 444982.5 19456.0 18681.3 2816.0 2575.8 7 0.550 0 0.000 0.550 9.7 34048.0 34048.0 34046.7 0.0 272640.0 16777.0 1756416.0 587906.3 20096.0 19235.1 2944.0 2631.8 8 0.720 0 0.000 0.72010.7 34048.0 34048.0 0.0 34046.2 272640.0 80171.6 1756416.0 664913.4 20352.0 19495.9 2944.0 2657.4 9 0.810 0 0.000 0.81011.7 34048.0 34048.0 34048.0 0.0 272640.0 129480.8 1756416.0 745100.2 20608.0 19704.5 2944.0 2678.4 10 0.896 0 0.000 0.89612.7 34048.0 34048.0 0.0 34046.6 272640.0 164070.7 1756416.0 822073.7 20992.0 19937.1 3072.0 2702.8 11 0.978 0 0.000 0.97813.7 34048.0 34048.0 34048.0 0.0 272640.0 211949.9 1756416.0 897364.4 21248.0 20179.6 3072.0 2728.1 12 1.087 1 0.004 1.09114.7 34048.0 34048.0 0.0 34047.1 272640.0 245801.5 1756416.0 597362.6 21504.0 20390.6 3072.0 2750.3 13 1.183 2 0.050 1.23315.7 34048.0 34048.0 0.0 34048.0 272640.0 21474.1 1756416.0 757347.0 22012.0 20792.0 3200.0 2791.0 15 1.336 2 0.050 1.38616.7 34048.0 34048.0 34047.0 0.0 272640.0 48378.0 1756416.0 838594.4 22268.0 21003.5 3200.0 2813.2 16 1.433 2 0.050 1.484
这个片段是 JVM 启动后第17秒提取的。基于该信息,我们可以得出这样的结果,运行了12次 Minor GC、2次 Full GC,时间总跨度为50毫秒。通过 jconsole 或者 jvisualvm 这样的基于GUI的工具你能得到同样的结果。
java -XX:+PrintGCDetails -XX:+UseConcMarkSweepGC eu.plumbr.demo.GarbageProducer3.157: [GC (Allocation Failure) 3.157: [ParNew: 272640K->34048K(306688K), 0.0844702 secs] 272640K->69574K(2063104K), 0.0845560 secs] [Times: user=0.23 sys=0.03, real=0.09 secs] 4.092: [GC (Allocation Failure) 4.092: [ParNew: 306688K->34048K(306688K), 0.1013723 secs] 342214K->136584K(2063104K), 0.1014307 secs] [Times: user=0.25 sys=0.05, real=0.10 secs] ... cut for brevity ...11.292: [GC (Allocation Failure) 11.292: [ParNew: 306686K->34048K(306688K), 0.0857219 secs] 971599K->779148K(2063104K), 0.0857875 secs] [Times: user=0.26 sys=0.04, real=0.09 secs] 12.140: [GC (Allocation Failure) 12.140: [ParNew: 306688K->34046K(306688K), 0.0821774 secs] 1051788K->856120K(2063104K), 0.0822400 secs] [Times: user=0.25 sys=0.03, real=0.08 secs] 12.989: [GC (Allocation Failure) 12.989: [ParNew: 306686K->34048K(306688K), 0.1086667 secs] 1128760K->931412K(2063104K), 0.1087416 secs] [Times: user=0.24 sys=0.04, real=0.11 secs] 13.098: [GC (CMS Initial Mark) [1 CMS-initial-mark: 897364K(1756416K)] 936667K(2063104K), 0.0041705 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 13.102: [CMS-concurrent-mark-start]13.341: [CMS-concurrent-mark: 0.238/0.238 secs] [Times: user=0.36 sys=0.01, real=0.24 secs] 13.341: [CMS-concurrent-preclean-start]13.350: [CMS-concurrent-preclean: 0.009/0.009 secs] [Times: user=0.03 sys=0.00, real=0.01 secs] 13.350: [CMS-concurrent-abortable-preclean-start]13.878: [GC (Allocation Failure) 13.878: [ParNew: 306688K->34047K(306688K), 0.0960456 secs] 1204052K->1010638K(2063104K), 0.0961542 secs] [Times: user=0.29 sys=0.04, real=0.09 secs] 14.366: [CMS-concurrent-abortable-preclean: 0.917/1.016 secs] [Times: user=2.22 sys=0.07, real=1.01 secs] 14.366: [GC (CMS Final Remark) [YG occupancy: 182593 K (306688 K)]14.366: [Rescan (parallel) , 0.0291598 secs]14.395: [weak refs processing, 0.0000232 secs]14.395: [class unloading, 0.0117661 secs]14.407: [scrub symbol table, 0.0015323 secs]14.409: [scrub string table, 0.0003221 secs][1 CMS-remark: 976591K(1756416K)] 1159184K(2063104K), 0.0462010 secs] [Times: user=0.14 sys=0.00, real=0.05 secs] 14.412: [CMS-concurrent-sweep-start]14.633: [CMS-concurrent-sweep: 0.221/0.221 secs] [Times: user=0.37 sys=0.00, real=0.22 secs] 14.633: [CMS-concurrent-reset-start]14.636: [CMS-concurrent-reset: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
在点头同意这个结论之前,让我们看看来自同一个 JVM 启动收集的垃圾收集日志的输出。显然- XX :+ PrintGCDetails 告诉我们一个不同且更详细的故事:
基于这些信息,我们可以看到12次 Minor GC 后开始有些和上面不一样了。没有运行两次 Full GC,这不同的地方在于单个 GC 在永久代中不同阶段运行了两次:
1、最初的标记阶段,用了0.0041705秒也就是4ms左右。这个阶段会暂停“全世界( stop-the-world)”的事件,停止所有应用程序的线程,然后开始标记。
2、并行执行标记和清洗阶段。这些都是和应用程序线程并行的。
3、最后 Remark 阶段,花费了0.0462010秒约46ms。这个阶段会再次暂停所有的事件。
4、并行执行清理操作。正如其名,此阶段也是并行的,不会停止其他线程。
所以,正如我们从垃圾回收日志中所看到的那样,实际上只是执行了 Major GC 去清理老年代空间而已,而不是执行了两次 Full GC。
如果你是后期做决 定的话,那么由 jstat 提供的数据会引导你做出正确的决策。它正确列出的两个暂停所有事件的情况,导致所有线程停止了共计50ms。但是如果你试图优化吞吐量,你会被误导的。清 单只列出了回收初始标记和最终 Remark 阶段,jstat的输出看不到那些并发完成的工作。
结论
考虑到这种情况,最好避免以 Minor、Major、Full GC 这种方式来思考问题。而应该监控应用延迟或者吞吐量,然后将 GC 事件和结果联系起来。
随着这些 GC 事件的发生,你需要额外的关注某些信息,GC 事件是强制所有应用程序线程停止了还是并行的处理了部分事件。
 
最后
欢迎大家一起交流,喜欢文章记得关注我点个赞哟,感谢支持!
 

一文搞清楚Minor GC、Major GC 、Full GC 之间的关系的更多相关文章

  1. VS2010/MFC编程入门之四十(文档、视图和框架:各对象之间的关系)

    前面一节中鸡啄米进行了文档.视图和框架的概述,本节主要讲解文档.视图.框架结构中各对象之间的关系. 各个对象之间的关系 文档.视图.框架结构中涉及到的对象主要有:应用程序对象.文档模板对象.文档对象. ...

  2. VS2010-MFC(文档、视图和框架:各对象之间的关系)

    转自:http://www.jizhuomi.com/software/223.html 前面一节进行了文档.视图和框架的概述,本节主要讲解文档.视图.框架结构中各对象之间的关系. 各个对象之间的关系 ...

  3. 一文读懂Python web框架和web服务器之间的关系

    我们都知道 Python 作为一门强大的语言,能够适应快速原型和较大项目的制作,因此被广泛用于 web 应用程序的开发中. 在面试的过程中,大家或多或少都被问到过这样一个问题:一个请求从浏览器发出到数 ...

  4. 一文搞懂PV、UV、VV、IP及其关系与计算

    写在前面 十一长假基本上过去了,很多小伙伴在假期当中还是保持着持续学习的心态,也有不少小伙伴在微信上问我,让我推送相关的文章.这个时候,我都是抽空来整理小伙伴们的问题,然后,按照顺序进行推文. PS: ...

  5. Minor GC&Full GC&Major GC区别及触发条件

    Minor GC:从年轻代回收内存 触发条件 1.Eden区域满 ​ 2.新创建的对象大小 > Eden所剩空间 Full GC:清理整个堆空间,包括年轻代和老年代 触发条件 ​ 1.每次晋升到 ...

  6. jvm minor gc 为什么比 full gc 快很多

    1.minor gc 也需要STW,只不过正常情况下 minor gc  STW时间非常短,所以很多人误以为没有STW. 这里的正常情况是,Eden 区产生的新对象大部分被回收了,不需要拷贝. 2.M ...

  7. 4. GC 算法(实现篇) - GC参考手册

    您应该已经阅读了前面的章节: 垃圾收集简介 - GC参考手册 Java中的垃圾收集 - GC参考手册 GC 算法(基础篇) - GC参考手册 学习了GC算法的相关概念之后, 我们将介绍在JVM中这些算 ...

  8. 一文搞懂所有Java集合面试题

    Java集合 刚刚经历过秋招,看了大量的面经,顺便将常见的Java集合常考知识点总结了一下,并根据被问到的频率大致做了一个标注.一颗星表示知识点需要了解,被问到的频率不高,面试时起码能说个差不多.两颗 ...

  9. 【GC分析】Java GC日志查看

    Java中的GC有哪几种类型? 参数 描述 UseSerialGC 虚拟机运行在Client模式的默认值,打开此开关参数后, 使用Serial+Serial Old收集器组合进行垃圾收集. UsePa ...

随机推荐

  1. root权限后,不要忘了还有selinux

    下面的例子运行在中兴android 5.0手机上. 当我们使用root权限的python去创建socket监听端口8088时,selinux向kmsg输出了下面的记录 python-android5 ...

  2. ZeroC ICE的协议

  3. Filebeat自定义索引 && 多output过滤

    一.目标 1)实现自定义索引 2)不同的input输出到各自对应的索引,nginx的日志输出到index-nginx的索引,zabbix的日志输出到index-zabbix,app的日志输出到inde ...

  4. 折腾笔记-计蒜客T1158-和为给定数AC记

    欢迎查看原题 1.简单题目叙述 蒜头君给出若干个整数,询问其中是否有一对数的和等于给定的数. 输入格式 共三行: 第一行是整数 ),表示有 n 个整数. 第二行是 n 个整数.整数的范围是在 0 到  ...

  5. linux关闭不必要的用户

    #!/bin/bash for user in $( cat /etc/passwd | grep -v root | cut -d ":" -f 1 ) do str=(adm ...

  6. nginx重启后,反向代理失败之问题排查记录

    问题与排查过程 本地开发环境的服务器,部署了nginx,nginx上对静态的web前端页面进行了http 80端口代理:然后呢,因为一些原因,服务器重启了,重启服务器后,我去把nginx启动起来,但是 ...

  7. WebGPU学习(三):MSAA

    大家好,本文学习MSAA以及在WebGPU中的实现. 上一篇博文 WebGPU学习(二): 学习"绘制一个三角形"示例 下一篇博文 WebGPU学习(四):Alpha To Cov ...

  8. 谁说微服务是Spring Cloud的独角戏?Service Mesh了解一下?

    Service Mesh 的概念自 2017 年初提出之后,受到了业界的广泛关注,作为微服务的下一代发展架构在社区迅速发酵,并且孵化出了诸如 Istio 等广受业界关注的面向于云原生 (Cloud N ...

  9. 学习ThinkPHP的第21天---关联预载入、关联统计

    ThinkPHP关联预载入 预载入的作用是减少执行SQL语句,进而提升程序的性能. public function join(){ //用于监听SQL Db::listen(function ($sq ...

  10. ios 在APP内提示更新

    http://www.jianshu.com/p/24daf5147bda     ios如何在应用内部提示更新  两颗星 http://www.jianshu.com/p/2ba10a58bb02  ...