@

1、什么是决策树

决策树,就是一种把决策节点画成树的辅助决策工具,一种寻找最优方案的画图法。
如下图所示,从左图到右图就是一个简单的,利用决策树,辅助决策的过程。

2、如何构造一棵决策树?

2.1、基本方法

通过对不同特征的优先级区分判断后,优先选择优先级高的特征作为划分的特征。(如上图所示,假设优先级:学历>院校>工作经验。因此我们优先选择了学历作为分类依据,次而选择了院校作为分类依据,最后才选择了项目经验作为分类依据)。

那么,下一个问题来了,我们是怎样判断一个特征的优先级的?具体来说,就是我们在评价一个特征优先级时候的评价标准是什么。这个评价标准,在决策树中非常重要,一个合适评价标准,可以将不同的特征按照非常合理的方式进行优先级排序,从而能够构建出一颗比较完美的决策树。而一个不合适的评价标准则会导致最终构造的决策树出现种种问题。

2.2、评价标准是什么/如何量化评价一个特征的好坏?

在不同的决策树算法中,这个特征好坏的评价标准略有不同。比如,在问哦们今天讲的ID3算法中,评价标准是一个叫做 信息增益(Information Gain) 的东西。而在另一个决策树算法C4.5中,评判标准则进一步变为信息增益比(Information Gain Ration或Gain Ratio)。另外一个比较主流的决策树算法CART算法则是采用 基尼系数(Gini Index) 作为评判标准。这些东西,我们会在后面的几篇文章中一一涉及到,在本文中,我们将关注的重点放在信息增益上。

在进入正题之前,我们需要先了解一些简单的概念。第一个需要我们了解的概念叫做熵/entropy。学过中学物理的朋友们可能会有一些印象:熵,热力学中表征物质状态的参量之一,用符号S表示,其物理意义是体系混乱程度的度量。

熵这个概念最初源自于热力学中,1948年,香农引入了信息熵,将其定义为离散随机事件出现的概率。在信息学里面,熵是对不确定性的度量。 一个系统越是有序,信息熵就越低,反之一个系统越是混乱,它的信息熵就越高。 所以信息熵可以被认为是系统有序化程度的一个度量。其本质与热力学中的熵的概念是相同的。

可这又和我们今天要讲的信息增益这个评判标准有什么关系呢?我们不妨这样想,当我们得到一组信息,一组类似于上图左半部分的信息。该组信息有多个特征(如学历、学校等),同时有一组综合每一个特征得到的结论。上图展示的这组信息只有A、B、C、D四个实例,倘若我们有成千上万个实例,但看这成千上万实例构成的表格,我们的第一感受可能是混乱。没错,如此多的实例,粗鲁地被凭借在同一个表格中,实在是太混乱了。将混乱换成我们刚刚提到过的说法:这组信息的信息熵太高了。 这样的场景,尤其是当我们想要通过这张表去查询某些东西,更是非常不便。我们希望可以有某种方法,在降低系统混乱程度/降低系统熵值的同时,不损害信息的完整性。那么有没有这么一种方法呢?当然有的,就是我们今天讲到的决策树算法。

从上图的左边,到上图右边的转变,我们可以非常直观感受到,这组信息不仅变得不那么混乱,而且这种树形的表示方式,比较符合我们人类的思维习惯。为什么会出现这样感受上的差异呢?其实很简单,因为我们从右图的根节点开始,每做一次特征的划分,整个系统的熵值就得到了一次降低。 这个信息系统给我们的感受也就越来越规范。进而,我们很容易地引出信息增益地概念:信息增益就是我们以某一个特征划分某个信息系统后,这个系统整体信息熵降的数值。

接下来,我们很容易可以回答如何去判断一个特征的好坏:如果一个特征,相较于其他所有特征,在将一个信息系统按照该特征划分前后,可以将整个数据系统的信息熵降到最低(信息增益最大),这个特征就是一个好的特征。我们应该优先使用该特征进行系统的划分。

2.3、信息熵、信息增益的计算

在此,我们先给出信息熵的计算公式:

知道了信息熵的计算公式后,信息增益的计算公式也很容易理解,就是当前系统的信息熵S,减去按照某个特征划分整个系统后,每个子系统的信息熵乘以每个子系统在整个系统所占比例(Si X Pi),最后相加得到的值。也即:信息增益 InfoGain = S-Σ(SixPi)

举个例子,我们得到如下图所示的一个信息系统(该系统前四列为不同的四个特征,最后一列为结果。),那么要如何计算整个系统的信息熵,以及该系统对应某个特征的信息增益呢?

首先,可以看出,结果列中一共有14个样例,其中包括9个正例和5个负例。那么当前信息的熵计算

上面,我们计算出了整个系统的信息熵,也就是未对数据进行划分时的信息熵。那么下面我们计算使用某个特征对系统进行划分后,整个系统的信息熵,以及划分前后系统信息熵的差值(信息增益)比如,我们根据第一个特征Outlook进行划分:

划分后,数据被分为三部分了,那么各个分支的信息熵(子系统信息熵)计算如下:

我们将每个子系统的信息熵,乘以该子系统在整个系统中所占比例,依次相加后,得到划分后系统的整体信息熵。如下图所示:

最后,终于来到我们最激动人心的一步了,计算信息增益,如下图所示:

2.4、决策树构建方法

在上一步中,我们计算出每个特征所对应地信息增益,选取信息增益最大的特征优先划分整个系统(将系统划分为一个个子数据集/子树/子系统)。
在每个子系统中,我们再 重新计算 未被使用过的特征的优先级,并选择优先级最大的特征继续划分数据集构造子树。知道,该递归构造子树的过程因为某些原因终止为止。

2.4、构造终止的条件/何时停止构造子树?

1、当我们发现一个子树中,结果完全相同,如结果全部为YES的时候,就没有在该子树中继续构造下去的必要了(其他子树中的构造过程未必终止)。此时我们得到该子树最终的结果为YES。

2、当我们发现一个子树中,虽然其结果没有完全相同,但已经没有可以支撑我们继续构造子树的特征了(简而言之就是所有特征都已经用过了),这个时候就可以停止在该子树中继续构造了。此时,该子树的最终结果为该子树集合的结果列中,出现次数最多的哪个属性值。

3、算法总结

1、判断每一个子树中的每个例子结果是否一致或是否特征已用尽
  是:该子树构造完成,返回该子树对应的最终结果。
  否:继续递归构造子树
若1中结果为否,则:
  1.1、计算当前子系统信息熵
  1.2、计算未被使用过的特征的信息增益
  1.3、选取最大的信息增益的特征进行划分,并从特征集合中删除该特征
  1.4、根据3中划分构造子树,并转向步骤1。

【Machine Learning·机器学习】决策树之ID3算法(Iterative Dichotomiser 3)的更多相关文章

  1. 【Machine Learning】决策树之ID3算法 (2)

    决策树之ID3算法 Content 1.ID3概念 2.信息熵 3.信息增益 Information Gain 4. ID3 bias 5. Python算法实现(待定) 一.ID3概念 ID3算法最 ...

  2. 机器学习-决策树之ID3算法

    概述 决策树(Decision Tree)是一种非参数的有监督学习方法,它是一种树形结构,所以叫决策树.它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回 ...

  3. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  4. Portal:Machine learning机器学习:门户

    Machine learning Machine learning is a scientific discipline that explores the construction and stud ...

  5. 决策树之ID3算法

    一.决策树之ID3算法简述 1976年-1986年,J.R.Quinlan给出ID3算法原型并进行了总结,确定了决策树学习的理论.这可以看做是决策树算法的起点.1993,Quinlan将ID3算法改进 ...

  6. [原创]Machine Learning/机器学习 文章合集

    转载请注明出处:https://www.codelast.com/ ➤ 用人话解释机器学习中的Logistic Regression(逻辑回归) ➤ 如何防止softmax函数上溢出(overflow ...

  7. [Machine Learning] 机器学习常见算法分类汇总

    声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...

  8. Machine Learning:机器学习算法

    原文链接:https://riboseyim.github.io/2018/02/10/Machine-Learning-Algorithms/ 摘要 机器学习算法分类:监督学习.半监督学习.无监督学 ...

  9. 简单易学的机器学习算法——决策树之ID3算法

    一.决策树分类算法概述     决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类.例如对于如下数据集 (数据集) 其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是 ...

随机推荐

  1. 关于AI本质的思考

    前言 最近几天和一位朋友探讨了一下现阶段的人工智能以及未来发展,并且仔细重读了尤瓦尔赫拉利的“简史三部曲”,产生了一些关于AI的新想法,觉得有必要整理出来. 程序.AI的本质 现代的计算机都是基于图灵 ...

  2. JAVA复习笔记01

    学了一学期的JAVA,临近期末,整理了一些JAVA考试中需要掌握的点,记录在这里. 1.编译多个JAVA文件,运行程序 (1) javac .java .java java Main (2) java ...

  3. 授权公钥登录,sudo权限脚本

    #!/bin/bash############################################################### File Name: key_auth.sh# V ...

  4. JBuss--为所有JFinal开发者提供二次开发的后台管理系统

    百度搜索:JBuss 或jfinal.com官网https://www.jfinal.com/share/1704 JBuss背景: 2018年6月1日,作者“为道日损”从上海一家xxx公司离职,那时 ...

  5. white box白盒测试

    逻辑覆盖法:语句覆盖,判定覆盖,条件覆盖,判定/条件覆盖,组合覆盖,路径覆盖 基本路径测试法:Control Flow Graphs, CFG.带箭头的边 条件覆盖:使每个判定中每个条件的可能值至少满 ...

  6. 微服务-springboot-rabbitmq:实现延时队列

    延时队列应用于什么场景 延时队列顾名思义,即放置在该队列里面的消息是不需要立即消费的,而是等待一段时间之后取出消费.那么,为什么需要延迟消费呢?我们来看以下的场景 网上商城下订单后30分钟后没有完成支 ...

  7. centos 上安装redis 3.0.5

    官网下载安装包,直接使用make编译,报如下错误 : [root@localhost redis-3.0.5]# make cd src && make all make[1]: 进入 ...

  8. vmware的卸载

    vmware出了点问题,在控制面板里或者是360都没法删除干净.在网上搜了点资料,找到一些删除的方法,参考链接如下: http://zhidao.baidu.com/question/30902992 ...

  9. Vue状态管理之Bus

    一般在项目中,状态管理都是使用Vue官方提供的Vuex 当在多组件之间共享状态变得复杂时,使用Vuex,此外也可以使用Bus来进行简单的状态管理 1.1 父组件与子组件之间的通信 vue.config ...

  10. JQuery学习笔记(3)——节点操作 节点查找

    插入节点 内部插入 所谓的内部插入,就是指在节点里面的插入,而外部插入,则是在节点外面插入. append() prepend() appendTo() prependTo() append和prep ...