java高并发系列-第1天:必须知道的几个概念

同步(Synchronous)和异步(Asynchronous)

同步和异步通常来形容一次方法调用,同步方法调用一旦开始,调用者必须等到方法调用返回后,才能继续后续的行为异步方法调用更像一个消息传递,一旦开始,方法调用就会立即返回,调用者就可以继续后续的操作。而异步方法通常会在另外一个线程中“真实”地执行。整个过程,不会阻碍调用者的工作。

如图:

上图中显示了同步方法调用和异步方法调用的区别。对于调用者来说,异步调用似乎是一瞬间就完成的。如果异步调用需要返回结果,那么当这个异步调用真实完成时,则会通知调用者。

打个比方,比如购物,如果你去商场买空调,当你到了商场看重了一款空调,你就向售货员下单。售货员去仓库帮你调配物品。这天你热的是在不行了,就催着商家赶紧给你送货,于是你就在商店里面候着他们,直到商家把你和空调一起送回家,一次愉快的购物就结束了。这就是同步调用。

不过,如果我们赶时髦,就坐在家里打开电脑,在电脑上订购了一台空调。当你完成网上支付的时候,对你来说购物过程已经结束了。虽然空调还没有送到家,但是你的任务已经完成了。商家接到你的订单后,就会加紧安平送货,当然这一切已经跟你无关了。你已经支付完成,想干什么就能去干什么,出去溜几圈都不成问题,等送货上门的时候,接到商家的电话,回家一趟签收就完事了。这就是异步调用。

并发(Concurrency)和并行(Parallelism)

并发和并行是两个非常容易被混淆的概念。他们都可以表示两个或者多个任务一起执行,但是侧重点有所不同。并发偏重于多个任务交替执行,而多个任务之间有可能还是串行的,而并行是真正意义上的“同时执行”,下图很好地诠释了这点。

大家排队在一个咖啡机上接咖啡,交替执行,是并发;两台咖啡机上面接咖啡,是并行。

从严格意义上来说,并行的多任务是真的同时执行,而对于并发来说,这个过程只是交替的,一会执行任务A,一会执行任务B,系统会不停地在两者之间切换。但对于外部观察者来说,即使多个任务之间是串行并发的,也会造成多任务间并行执行的错觉。

并发说的是在一个时间段内,多件事情在这个时间段内交替执行

并行说的是多件事情在同一个时刻同事发生。

实际上,如果系统内只有一个CPU,而使用多进程或者多线程任务,那么真实环境中这些任务不可能是真实并行的,毕竟一个CPU一次只能执行一条指令,在这种情况下多进程或者多线程就是并发的,而不是并行的(操作系统会不停地切换多任务)。真实的并行也只可能出现在拥有多个CPU的系统中(比如多核CPU)。

临界区

临界区用来表示一种公共资源或者说共享数据,可以被多个线程使用,但是每一次只能有一个线程使用它,一旦临界区资源被占用,其他线程要想使用这个资源就必须等待。

比如,一个办公室里有一台打印机,打印机一次只能执行一个任务。如果小王和小明同时需要打印文件,很明显,如果小王先发了打印任务,打印机就开始打印小王的文件,小明的任务就只能等待小王打印结束后才能打印,这里的打印机就是一个临界区的例子。

在并行程序中,临界区资源是保护的对象,如果意外出现打印机同时执行两个任务的情况,那么最有可能的结果就是打印出来的文件是损坏的文件,它既不是小王想要的,也不是小明想要的。

阻塞(Blocking)和非阻塞(Non-Blocking)

阻塞和非阻塞通常用来形容很多线程间的相互影响。比如一个线程占用了临界区资源,那么其他所有需要这个资源的线程就必须在这个临界区中等待。等待会导致线程挂起,这种情况就是阻塞。此时,如果占用资源的线程一直不愿意释放资源,那么其他线程阻塞在这个临界区上的线程都不能工作。

非阻塞的意思与之相反,它强调没有一个线程可以妨碍其他线程执行,所有的线程都会尝试不断向前执行。

死锁(Deadlock)、饥饿(Starvation)和活锁(Livelock)

死锁饥饿活锁都属于多线程的活跃性问题。如果发现上述几种情况,那么相关线程就不再活跃,也就是说它可能很难再继续往下执行了。

死锁应该是最糟糕的一种情况了(当然,其他几种情况也好不到哪里去),如下图显示了一个死锁的发生:

A、B、C、D四辆小车都在这种情况下都无法继续行驶了。他们彼此之间相互占用了其他车辆的车道,如果大家都不愿意释放自己的车道,那么这个状况将永远持续下去,谁都不可能通过,死锁是一个很严重的并且应该避免和实时小心的问题,后面的文章中会做更详细的讨论。

饥饿是指某一个或者多个线程因为种种原因无法获得所要的资源,导致一直无法执行。比如它的优先级可能太低,而高优先级的线程不断抢占它需要的资源,导致低优先级线程无法工作。在自然界中,母鸡给雏鸟喂食很容易出现这种情况:由于雏鸟很多,食物有限,雏鸟之间的事务竞争可能非常厉害,经常抢不到事务的雏鸟有可能被饿死。线程的饥饿非常类似这种情况。此外,某一个线程一直占着关键资源不放,导致其他需要这个资源的线程无法正常执行,这种情况也是饥饿的一种。于死锁想必,饥饿还是有可能在未来一段时间内解决的(比如,高优先级的线程已经完成任务,不再疯狂执行)。

活锁是一种非常有趣的情况。不知道大家是否遇到过这么一种场景,当你要做电梯下楼时,电梯到了,门开了,这是你正准备出去。但很不巧的是,门外一个人当着你的去路,他想进来。于是,你很礼貌地靠左走,礼让对方。同时,对方也非常礼貌的靠右走,希望礼让你。结果,你们俩就又撞上了。于是乎,你们都意识到了问题,希望尽快避让对方,你立即向右边走,同时,他立即向左边走。结果,又撞上了!不过介于人类的智慧,我相信这个动作重复两三次后,你应该可以顺利解决这个问题。因为这个时候,大家都会本能地对视,进行交流,保证这种情况不再发生。但如果这种情况发生在两个线程之间可能就不那么幸运了。如果线程智力不够。且都秉承着“谦让”的原则,主动将资源释放给他人使用,那么久会导致资源不断地在两个线程间跳动,而没有一个线程可以同时拿到所有资源正常执行。这种情况就是活锁。

死锁的例子

package com.jvm.visualvm;

/**
* <a href="http://www.itsoku.com/archives">Java干货铺子,只生产干货,公众号:javacode2018</a>
*/
public class Demo4 { public static void main(String[] args) {
Obj1 obj1 = new Obj1();
Obj2 obj2 = new Obj2();
Thread thread1 = new Thread(new SynAddRunalbe(obj1, obj2, 1, 2, true));
thread1.setName("thread1");
thread1.start();
Thread thread2 = new Thread(new SynAddRunalbe(obj1, obj2, 2, 1, false));
thread2.setName("thread2");
thread2.start();
} /**
* 线程死锁等待演示
*/
public static class SynAddRunalbe implements Runnable {
Obj1 obj1;
Obj2 obj2;
int a, b;
boolean flag; public SynAddRunalbe(Obj1 obj1, Obj2 obj2, int a, int b, boolean flag) {
this.obj1 = obj1;
this.obj2 = obj2;
this.a = a;
this.b = b;
this.flag = flag;
} @Override
public void run() {
try {
if (flag) {
synchronized (obj1) {
Thread.sleep(100);
synchronized (obj2) {
System.out.println(a + b);
}
}
} else {
synchronized (obj2) {
Thread.sleep(100);
synchronized (obj1) {
System.out.println(a + b);
}
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} public static class Obj1 {
} public static class Obj2 {
}
}

运行上面代码,可以通过jstack查看到死锁信息:

"thread2" #13 prio=5 os_prio=0 tid=0x0000000029225000 nid=0x3c94 waiting for monitor entry [0x0000000029c9f000]
java.lang.Thread.State: BLOCKED (on object monitor)
at com.jvm.visualvm.Demo4$SynAddRunalbe.run(Demo4.java:50)
- waiting to lock <0x00000007173d40f0> (a com.jvm.visualvm.Demo4$Obj1)
- locked <0x00000007173d6310> (a com.jvm.visualvm.Demo4$Obj2)
at java.lang.Thread.run(Thread.java:745) Locked ownable synchronizers:
- None "thread1" #12 prio=5 os_prio=0 tid=0x0000000029224800 nid=0x6874 waiting for monitor entry [0x0000000029b9f000]
java.lang.Thread.State: BLOCKED (on object monitor)
at com.jvm.visualvm.Demo4$SynAddRunalbe.run(Demo4.java:43)
- waiting to lock <0x00000007173d6310> (a com.jvm.visualvm.Demo4$Obj2)
- locked <0x00000007173d40f0> (a com.jvm.visualvm.Demo4$Obj1)
at java.lang.Thread.run(Thread.java:745) Locked ownable synchronizers:
- None

thread1持有com.jvm.visualvm.Demo4$Obj1的锁,等待获取com.jvm.visualvm.Demo4$Obj2的锁

thread2持有com.jvm.visualvm.Demo4$Obj2的锁,等待获取com.jvm.visualvm.Demo4$Obj1的锁,两个线程相互等待获取对方持有的锁,出现死锁。

饥饿死锁的例子

package com.jvm.jconsole;

import java.util.concurrent.*;

/**
* <a href="http://www.itsoku.com/archives">Java干货铺子,只生产干货,公众号:javacode2018</a>
*/
public class ExecutorLock {
private static ExecutorService single = Executors.newSingleThreadExecutor(); public static class AnotherCallable implements Callable<String> {
@Override
public String call() throws Exception {
System.out.println("in AnotherCallable");
return "annother success";
}
} public static class MyCallable implements Callable<String> {
@Override
public String call() throws Exception {
System.out.println("in MyCallable");
Future<String> submit = single.submit(new AnotherCallable());
return "success:" + submit.get();
}
} public static void main(String[] args) throws ExecutionException, InterruptedException {
MyCallable task = new MyCallable();
Future<String> submit = single.submit(task);
System.out.println(submit.get());
System.out.println("over");
single.shutdown();
}
}

执行代码,输出:

in MyCallable

使用jstack命令查看线程堆栈信息:

"pool-1-thread-1" #12 prio=5 os_prio=0 tid=0x0000000028e3d000 nid=0x58a4 waiting on condition [0x00000000297ff000]
java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x0000000717921bf0> (a java.util.concurrent.FutureTask)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.FutureTask.awaitDone(FutureTask.java:429)
at java.util.concurrent.FutureTask.get(FutureTask.java:191)
at com.jvm.jconsole.ExecutorLock$MyCallable.call(ExecutorLock.java:25)
at com.jvm.jconsole.ExecutorLock$MyCallable.call(ExecutorLock.java:20)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745) Locked ownable synchronizers:
- <0x00000007173f2690> (a java.util.concurrent.ThreadPoolExecutor$Worker) "main" #1 prio=5 os_prio=0 tid=0x00000000033e4000 nid=0x5f94 waiting on condition [0x00000000031fe000]
java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x00000007173f1d48> (a java.util.concurrent.FutureTask)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.FutureTask.awaitDone(FutureTask.java:429)
at java.util.concurrent.FutureTask.get(FutureTask.java:191)
at com.jvm.jconsole.ExecutorLock.main(ExecutorLock.java:32) Locked ownable synchronizers:
- None

堆栈信息结合图中的代码,可以看出主线程在32行处于等待中,线程池中的工作线程在25行处于等待中,等待获取结果。由于线程池是一个线程,AnotherCallable得不到执行,而被饿死,最终导致了程序死锁的现象。

java高并发系列

java高并发系列连载中,总计估计会有四五十篇文章,可以关注公众号:javacode2018,获取最新文章。

java高并发系列交流群:

java高并发系列-第1天:必须知道的几个概念的更多相关文章

  1. java高并发系列 - 第6天:线程的基本操作

    新建线程 新建线程很简单.只需要使用new关键字创建一个线程对象,然后调用它的start()启动线程即可. Thread thread1 = new Thread1(); t1.start(); 那么 ...

  2. java高并发系列 - 第12天JUC:ReentrantLock重入锁

    java高并发系列 - 第12天JUC:ReentrantLock重入锁 本篇文章开始将juc中常用的一些类,估计会有十来篇. synchronized的局限性 synchronized是java内置 ...

  3. java高并发系列 - 第14天:JUC中的LockSupport工具类,必备技能

    这是java高并发系列第14篇文章. 本文主要内容: 讲解3种让线程等待和唤醒的方法,每种方法配合具体的示例 介绍LockSupport主要用法 对比3种方式,了解他们之间的区别 LockSuppor ...

  4. java高并发系列 - 第15天:JUC中的Semaphore,最简单的限流工具类,必备技能

    这是java高并发系列第15篇文章 Semaphore(信号量)为多线程协作提供了更为强大的控制方法,前面的文章中我们学了synchronized和重入锁ReentrantLock,这2种锁一次都只能 ...

  5. java高并发系列 - 第16天:JUC中等待多线程完成的工具类CountDownLatch,必备技能

    这是java高并发系列第16篇文章. 本篇内容 介绍CountDownLatch及使用场景 提供几个示例介绍CountDownLatch的使用 手写一个并行处理任务的工具类 假如有这样一个需求,当我们 ...

  6. java高并发系列 - 第17天:JUC中的循环栅栏CyclicBarrier常见的6种使用场景及代码示例

    这是java高并发系列第17篇. 本文主要内容: 介绍CyclicBarrier 6个示例介绍CyclicBarrier的使用 对比CyclicBarrier和CountDownLatch Cycli ...

  7. java高并发系列 - 第21天:java中的CAS操作,java并发的基石

    这是java高并发系列第21篇文章. 本文主要内容 从网站计数器实现中一步步引出CAS操作 介绍java中的CAS及CAS可能存在的问题 悲观锁和乐观锁的一些介绍及数据库乐观锁的一个常见示例 使用ja ...

  8. java高并发系列 - 第22天:java中底层工具类Unsafe,高手必须要了解

    这是java高并发系列第22篇文章,文章基于jdk1.8环境. 本文主要内容 基本介绍. 通过反射获取Unsafe实例 Unsafe中的CAS操作 Unsafe中原子操作相关方法介绍 Unsafe中线 ...

  9. java高并发系列 - 第20天:JUC中的Executor框架详解2之ExecutorCompletionService

    这是java高并发系列第20篇文章. 本文内容 ExecutorCompletionService出现的背景 介绍CompletionService接口及常用的方法 介绍ExecutorComplet ...

随机推荐

  1. HALCON学习之算子大全

    1.1 Gaussian-Mixture-Models 1.add_sample_class_gmm 功能:把一个训练样本添加到一个高斯混合模型的训练数据上. 2.classify_class_gmm ...

  2. 多线程Parallel和Task

    不管是Parallel还是Task,最里面都是线程池(里面是线程)当开启多个任务后,系统会根据当前的线程池的资源进行分配,任务则进行等待Parallel可以对系统的CPU进行设置,可以最大程度上榨干系 ...

  3. WPF 打印不显示的元素

    <Window x:Class="_097打印不显示的元素.MainWindow"        xmlns="http://schemas.microsoft.c ...

  4. 【C#】使用EF访问Sqlite数据库

    原文:[C#]使用EF访问Sqlite数据库 1. 先上Nuget下载对应的包 如图,搜索System.Data.SQLite下载安装即可,下载完之后带上依赖一共有这么几个: EntityFramew ...

  5. iOS9 Spotlight使用

    1.Spotloight是什么? Spotlight在iOS9上做了一些新的改进, 也就是开放了一些新的API, 通过Core Spotlight Framework你可以在你的app中集成Spotl ...

  6. QT5.8 VS2017 编译教程(可以使用VS2017 XP兼容包)

    1.下载QT5.8源码 这个我不做过多解释. 2.安装使用的环境 visual studio 2017  Python Perl  Ruby 安装好,并配置好环境PATH变量. 3.修改错误代码 错误 ...

  7. MQTT-CN MQTT协议中文版

    欢迎任何形式的转载,但请务必注明出处:http://www.cnblogs.com/liangjingyang 项目地址:https://github.com/liangjingyang/MQTT-C ...

  8. 使用VS2010再装VS2013不用再烦恼不兼容

    某些同事有时在开发过程中出现这么个问题,在使用js直接异步调用类库时,弹出错误类库不存在或者没有定义等,类似问题,这个时候可能你正在绞尽脑汁的去解决问题,明明问题不大,为什么安装VS2013后就不能打 ...

  9. Windows10 下运行Linux子系统

    关于Windows10 下运行Linux子系统: Windows10内置Linux子系统初体验:http://www.jianshu.com/p/bc38ed12da1d Win10运行Ubuntu版 ...

  10. Java基础(五) final关键字浅析

    前面在讲解String时提到了final关键字,本文将对final关键字进行解析. static和final是两个我们必须掌握的关键字.不同于其他关键字,他们都有多种用法,而且在一定环境下使用,可以提 ...