http://acm.hdu.edu.cn/showproblem.php?pid=4819

题意:给出一个矩阵,然后q个询问,每个询问有a,b,c,代表(a,b)这个点上下左右c/2的矩形区域内的(最大值+最小值)/2是多少,并且将(a,b)的值替换成这个答案。

思路:很久以前被暴力跑过去的一道题,今天怎么交也过不去。。。果然是人品爆发了。

学了一下树套树,一开始觉得挺容易理解,但是后面PushUp那里挺难懂的(对我来说)。

我的理解:

对于每个线段树的结点开一棵线段树,即tree[x][y],x代表的是行的信息,y代表的是列的信息。

觉得PushUp难懂的原因是不知道行上的非叶子结点和列上的非叶子结点是怎么更新的。

 void PushUp1(int x, int y) {
tree[x][y].small = min(tree[x<<][y].small, tree[x<<|][y].small);
tree[x][y].big = max(tree[x<<][y].big, tree[x<<|][y].big);
} void PushUp2(int x, int y) {
tree[x][y].small = min(tree[x][y<<].small, tree[x][y<<|].small);
tree[x][y].big = max(tree[x][y<<].big, tree[x][y<<|].big);
} void Update1(int x, int leaf, int rt, int l, int r, int id, int val) {
if(l == r) {
if(leaf) { tree[x][rt].small = tree[x][rt].big = val; return ; }
PushUp1(x, rt); // 列相同的时候并且行不是叶子结点的时候去更新行的线段树的状态
return ;
}
int m = (l + r) >> ;
if(id <= m) Update1(x, leaf, lson, id, val);
else Update1(x, leaf, rson, id, val);
PushUp2(x, rt);
} void Update2(int rt, int l, int r, int xx, int yy, int val) {
if(l == r) {
Update1(rt, , , , n, yy, val);
return ;
}
int m = (l + r) >> ;
if(xx <= m) Update2(lson, xx, yy, val);
else Update2(rson, xx, yy, val);
Update1(rt, , , , n, yy, val);
}

首先看Update2,这是更新行的线段树信息,和普通线段树一样,只不过是普通的PushUp改成了Update1,插入操作改成了Update1,因此理解Update1就好了。

对于既是列的叶子结点又是行的叶子结点的结点,是对应于矩阵一个点的结点,因此对其赋值修改。

对于是列的叶子结点但是不是行的叶子结点的结点,我们将其行的信息像平时维护一维线段树一样,将行的信息PushUp。

对于不是列的叶子结点的结点,它可以储存列的区间信息,因此将列的信息PushUp。

那么像我之前的疑问,即不是列的叶子结点又不是行的叶子结点的信息在哪里维护。。。

注意原本的PushUp操作变成了Update1,即对于每个行结点,都会去更新对应的那棵线段树,而且是从底向上,因此信息都会被更新。

还优化了一下一开始的读入插入,用类似于Update的Build函数,可以在Build的时候行为叶子列为叶子的时候读入,这样操作为O(n^2)的复杂度,普通的Update插入需要O(n^2 logn^2),跑之后快了一倍的时间。

下面是所有代码:

 #include <bits/stdc++.h>
using namespace std;
#define N 800
#define INF 1000000007
#define lson rt<<1, l, m
#define rson rt<<1|1, m + 1, r
struct node {
int small, big;
} tree[N<<][N<<];
int big, small, n; void PushUp1(int x, int y) {
tree[x][y].small = min(tree[x<<][y].small, tree[x<<|][y].small);
tree[x][y].big = max(tree[x<<][y].big, tree[x<<|][y].big);
} void PushUp2(int x, int y) {
tree[x][y].small = min(tree[x][y<<].small, tree[x][y<<|].small);
tree[x][y].big = max(tree[x][y<<].big, tree[x][y<<|].big);
} void Build1(int x, int leaf, int rt, int l, int r) {
if(l == r) {
if(leaf) { scanf("%d", &tree[x][rt].big), tree[x][rt].small = tree[x][rt].big; return ; }
PushUp1(x, rt); return ;
}
int m = (l + r) >> ;
Build1(x, leaf, lson); Build1(x, leaf, rson);
PushUp2(x, rt);
} void Build2(int rt, int l, int r) {
if(l == r) { Build1(rt, , , , n); return ; }
int m = (l + r) >> ;
Build2(lson); Build2(rson);
Build1(rt, , , , n);
} void Query1(int x, int rt, int l, int r, int y1, int y2) {
if(y1 <= l && r <= y2) {
big = max(big, tree[x][rt].big);
small = min(small, tree[x][rt].small);
return ;
}
int m = (l + r) >> ;
if(y1 <= m) Query1(x, lson, y1, y2);
if(m < y2) Query1(x, rson, y1, y2);
} void Query2(int rt, int l, int r, int x1, int x2, int y1, int y2) {
if(x1 <= l && r <= x2) {
Query1(rt, , , n, y1, y2);
return ;
}
int m = (l + r) >> ;
if(x1 <= m) Query2(lson, x1, x2, y1, y2);
if(m < x2) Query2(rson, x1, x2, y1, y2);
} void Update1(int x, int leaf, int rt, int l, int r, int id, int val) {
if(l == r) {
if(leaf) { tree[x][rt].small = tree[x][rt].big = val; return ; }
PushUp1(x, rt); // 列相同的时候并且行不是叶子结点的时候去更新行的线段树的状态
return ;
}
int m = (l + r) >> ;
if(id <= m) Update1(x, leaf, lson, id, val);
else Update1(x, leaf, rson, id, val);
PushUp2(x, rt);
} void Update2(int rt, int l, int r, int xx, int yy, int val) {
if(l == r) {
Update1(rt, , , , n, yy, val);
return ;
}
int m = (l + r) >> ;
if(xx <= m) Update2(lson, xx, yy, val);
else Update2(rson, xx, yy, val);
Update1(rt, , , , n, yy, val);
} int main() {
int t; scanf("%d", &t);
for(int cas = ; cas <= t; cas++) {
scanf("%d", &n);
Build2(, , n);
int q; scanf("%d", &q);
printf("Case #%d:\n", cas);
while(q--) {
int a, b, c; scanf("%d%d%d", &a, &b, &c);
int x1 = max(, a - c / ), x2 = min(n, a + c / );
int y1 = max(, b - c / ), y2 = min(n, b + c / );
big = -INF, small = INF;
Query2(, , n, x1, x2, y1, y2);
int now = (big + small) / ;
printf("%d\n", now);
Update2(, , n, a, b, now);
}
}
return ;
}

HDU 4819:Mosaic(线段树套线段树)的更多相关文章

  1. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  2. HDU 4819 Mosaic (二维线段树&区间最值)题解

    思路: 二维线段树模板题,马克一下,以后当模板用 代码: #include<cstdio> #include<cmath> #include<cstring> #i ...

  3. HDU 4819 Mosaic 【二维线段树】

    题目大意:给你一个n*n的矩阵,每次找到一个点(x,y)周围l*l的子矩阵中的最大值a和最小值b,将(x,y)更新为(a+b)/2 思路:裸的二维线段树 #include<iostream> ...

  4. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

  5. hdu-4819-线段树套线段树

    http://acm.hdu.edu.cn/showproblem.php?pid=4819 给出一个N*N的矩阵,每次询问一个m*m的子矩阵里的floor((maxv+minv)/2)并把中间的元素 ...

  6. bzoj 3196 Tyvj 1730 二逼平衡树(线段树套名次树)

    3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1807  Solved: 772[Submit][Stat ...

  7. [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】

    题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...

  8. ZJOI 2017 树状数组(线段树套线段树)

    题意 http://uoj.ac/problem/291 思路 不难发现,九条カレン醬所写的树状数组,在查询区间 \([1,r]\) 的时候,其实在查询后缀 \([r,n]\) :在查询 \([l,r ...

  9. BZOJ4317Atm的树&BZOJ2051A Problem For Fun&BZOJ2117[2010国家集训队]Crash的旅游计划——二分答案+动态点分治(点分树套线段树/点分树+vector)

    题目描述 Atm有一段时间在虐qtree的题目,于是,他满脑子都是tree,tree,tree…… 于是,一天晚上他梦到自己被关在了一个有根树中,每条路径都有边权,一个神秘的声音告诉他,每个点到其他的 ...

  10. dfs序+主席树 或者 树链剖分+主席树(没写) 或者 线段树套线段树 或者 线段树套splay 或者 线段树套树状数组 bzoj 4448

    4448: [Scoi2015]情报传递 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 588  Solved: 308[Submit][Status ...

随机推荐

  1. TestDisk 数据恢复 重建分区表恢复文件-恢复diskpart clean

    source:http://www.cgsecurity.org/wiki/TestDisk_CN TestDisk 是一款开源软件,受GNU General Public License (GPL ...

  2. Win8Metro(C#)数字图像处理--2.16图像浮雕效果

    原文:Win8Metro(C#)数字图像处理--2.16图像浮雕效果  [函数名称] 图像浮雕效果函数ReliefProcess(WriteableBitmap src) [函数代码]       ...

  3. C# TIFF图像开发

    NuGet安装控件: Install-Package BitMiracle.LibTiff.NET -Version 实现代码: private BitmapSource TiffToBitmap(s ...

  4. C#应用配置信息保存和读取

    //保存信息 SystemConfig.WriteConfigData(“字段名称”, “这里是需要保存的内容”); //读取信息 SystemConfig.GetConfigData(“字段名称”, ...

  5. Q_DECLARE_METATYPE(继承QObject的类都已经自动注册),注册后的类型可以作为QVariant的自定义类型

    简介 这个宏用来注册一个类(含默认构造.默认析构.拷贝构造函数)为QMetaType类型 ,注册后的类型可以作为QVariant的自定义类型. 这个宏应该放在类或者结构体外面的下面,也可以放在一个非公 ...

  6. [转]UE的职责

    最近开始负责产品工作,从产品定位到需求文档再到原型设计,以及后续产品的路线规划,渐渐感觉忙不过来了.所以准备招一个UE/X来辅助. 以前做项目,也没接触过什么UE,所以对UE的工作不是很清楚,尤其是P ...

  7. c#编写的基于Socket的异步通信系统--SanNiuSignal.DLL已开源

    自从推出了SanNiuSignal.DLL,用户反映还是满好的;为了更好的服务于大家,我已经修复了很多BUG,同时把这个DLL开源;下面就先来介绍下 使用这个DLL开发出的简单的通信系统;如图: 想使 ...

  8. .NET错误:未找到类型或命名空间名称

    现象:编译项目时提示未找到类型或命名空间名称"... " 解决方法:如果是未找到类型,检查是否引用了类型所在的命名空间,使用using指令:如果是未找到命名空间,那么检查是否引用了 ...

  9. es6基本语法,vue基本语法

    一.es6基本语法 0.es6参考网站 http://es6.ruanyifeng.com/#README 1.let 和 const (1)const特点: 只在局部作用域起作用 不存在变量提升 不 ...

  10. redis的下载及使用

    1.下载 方式一(通过yum) yum install redis -y 方式二(通过源码编译) (1)下载源码包 wget http://download.redis.io/releases/red ...