Feature Fusion for Online Mutual Knowledge Distillation (CVPR 2019)
一、解决问题
- 如何将特征融合与知识蒸馏结合起来,提高模型性能
二、创新点
- 支持多子网络分支的在线互学习
- 子网络可以是相同结构也可以是不同结构
- 应用特征拼接、depthwise+pointwise,将特征融合和知识蒸馏结合起来
三、实验方法和理论
1.Motivation
DML (Deep Mutual Learning)

- 算法思想:
用两个子网络(可以是不同的网络结构)进行在线互学习,得到比单独训练性能更好的网络
- 损失函数:
传统监督损失函数:

模仿性的损失函数:

单个网络的损失函数:

ONE (On-the-FlyNative Ensemble)

- 算法思想:
通过在网络深层次构造多分支结构,每个分支作为学生网络,融合logit分布,生成更强的教师网络,进而通过学生/教师网络的共同在线学习,互相蒸馏,训练得性能优越的单分支或多分支融合模型。
logit融合 (Gate Module:FC、BN、ReLU、Softmax):

损失函数:

DualNet

- 算法思想:
通过融合两个互补parallel networks生成的特征,使得融合后的性能比单独训练的性能更好
损失函数:

启发:结合DML、ONE和DualNet的思想,构造一个支持(相同或者不同的)多个子网络分支进行特征融合的网络结构,进而让融合分类器和分类器进行在线互学习,互蒸馏的方式,从而提高网络的性能。
2.Network Architecture

- Fusion Module

- Fusion Module 将Net1 和Net2 的到的特征张量进行拼接,然后通过Depthwise conv 得到一个通道数为M的特征张量,经过 Pointwise conv 后生成一个通道数为N的特征张量,即为融合后的特征。
- 子网络和融合网络同时训练,将子网络最后一层得到的特征,通过一个Fusion Module进行特征融合,得到融合分类器的概率分布。
3.训练过程
- 软分布概率:

其中,
- 集成logit概率分布计算:

- 交叉熵损失函数:

- KL散度损失函数:


这里有两个KL散度损失函数,分别对应从 Ensemble Classifier 到 Fused Classifier 的知识蒸馏和从 Fused Classifer 到 Sub-network Classifier 的知识蒸馏的损失函数。
- 总的损失函数:

四、实验结果
数据集
- CIFAR-10
- 50k 训练集,10k 测试集
- 10种图像类别,每类 6k 张图片
- CIFAR-100
- 50k 训练集,10k 测试集
- 100种图像类别,每类600张图片
- ImageNet LSVRC2015
- 1.2M 训练集,50k 验证集
- 1000种图像类别
特征融合对比(FFL vs DualNet):

- FFL融合后的性能略比DualNet好
- FFL得到的子网络性能明显比DualNet好
消融实验

- 缺少任何一个模块都会导致融合分类器和子分类的效果下降,尤其当缺少FKD时,子网络性能下降很多。
在线蒸馏对比(FFL vs ONE):
由于FFL比ONE多了一个Fusion Module为了参数大小公平起见,ONE在Gate模块前多叠加几个残差模块

- vanilla 表示单独训练的结果,ONE表示两个子网络的平均结果,ONE-E表示融合后的结果,ONE-E+表示参数与FFL大小一样融合后的结果,FFL-S表示子网络的平均结果,FFL表示融合后的结果
- 即便增加ONE的残差模块,从ONE-E和ONE-E+的对比来看,性能并没有多大提升,甚至有所下降(例如CIFAR-100)
- 从表格发现,FFL比ONE的效果略有提升

分支拓展:

- 随着分支数增多,性能也略有提升。
ImageNet:

- ONE 和 FFL性能相似,FFL效果略好一些。
- 这说明了本文方法一样适用于大规模的数据集
互学习性能对比(FFL vs DML):

- 虽然参数量FFL比DML多4%,但性能优于DML,也说明了FFL适用于不同子网络结构。
定性分析

- 1-2列,分类都是正确,但FFL关注的特征区域比单独训练的ResNet-34好,且置信度更高
- 3-6列,FFL分类正确,而单独训练的ResNet-34分类错误
- 7-9列,两者分类都是错误的,但是FFL关注的特征区域属于正确类别的关注区域。
- 同时我们发现Subnet的特征热区一直在拟合Fusion的结果,这也验证了互蒸馏的有效性,即的确学习到软概率分布中含有的丰富的错误类别的相关概率信息。
五、 总结
结合预训练模型,该方法可以适用于图像检测(RPN特征),图像分割(dense feature),风格迁移等任务。
同时兼顾子网络和融合网络的性能,根据实际需要,选择子网络或者融合网络
Fusion Module 可以得到更为丰富的图像特征,从而提高整体性能。
子网络的选择限制低,可以选择多个相同或者不同的网络构成
能够将多个方法的优点结合起来得到更好的方法,实验充分
不足:参数量略多一些,以及子网络结构选取的不确定性
Feature Fusion for Online Mutual Knowledge Distillation (CVPR 2019)的更多相关文章
- Semantic Parsing(语义分析) Knowledge base(知识图谱) 对用户的问题进行语义理解 信息检索方法
简单说一下所谓Knowledge base(知识图谱)有两条路走,一条是对用户的问题进行语义理解,一般用Semantic Parsing(语义分析),语义分析有很多种,比如有用CCG.DCS,也有用机 ...
- 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...
- 【论文解读】行人检测:What Can Help Pedestrian Detection?(CVPR'17)
前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的ex ...
- HDU100题简要题解(2010~2019)
HDU2010 水仙花数 题目链接 Problem Description 春天是鲜花的季节,水仙花就是其中最迷人的代表,数学上有个水仙花数,他是这样定义的: "水仙花数"是指一个 ...
- 洛谷P5322 (BJOI 2019) DP
### 题目链接 ### 分析: 1.用 vector<int> v[i] 来存 i 城堡, s 个对手所安排的士兵数量. 2.设 dp[i][j] 表示 i 城堡前,在当前最大派兵量为 ...
- Residual Attention Network for Image Classification(CVPR 2017)详解
一.Residual Attention Network 简介 这是CVPR2017的一篇paper,是商汤.清华.香港中文和北邮合作的文章.它在图像分类问题上,首次成功将极深卷积神经网络与人类视觉注 ...
- CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业(逻辑回归)
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); % ...
- 【论文小综】基于外部知识的VQA(视觉问答)
我们生活在一个多模态的世界中.视觉的捕捉与理解,知识的学习与感知,语言的交流与表达,诸多方面的信息促进着我们对于世界的认知.作为多模态领域的一个典型场景,VQA旨在结合视觉的信息来回答所提出的问题 ...
随机推荐
- JSP HTML 各种 乱码 解决方法|jsp include html乱码|include 乱码|MyEclipse 中文乱码
笔者花了一整天研究这个问题 .最终解决了所有的中文乱码问题. 不用 写 过滤器,不用改 tomcat 的配置文件 笔者使用的 软件是 MyEclipse2013 professional 版 JSP ...
- 主流 CSS 布局(水平居中、垂直居中、居中 )
什么是布局 html 页面的整体结构或骨架 布局不是某个技术内容 而是一种设计思想 [ 布局方式 ] 水平居中布局 垂直居中布局 居中布局( 水平 + 垂直 ) 什么是水平居中布局 水平居中布局 元素 ...
- Spring IoC的概念
Spring IoC的基础知识 Spring 框架可以说是Java世界中最成功的框架,它的成功来自于理念,而不是技术,它最核心的理念是IoC(控制反转)和AOP(面向切面编程),其中IoC是Sprin ...
- MySQL数据库的安装与配置(windows)
MySQL是目前最为流行的开放源码的数据库,是完全网络化的跨平台的关系型数据库系统,它是由瑞典MySQLAB公司开发,目前属于Oracle公司.任何人都能从Internet下载MySQL软件,而无需支 ...
- Unity5-ABSystem(二):AssetBundle导出
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/lodypig/article/detai ...
- 【Auto.js images.matchTemplate() 函数的特点】
Auto.js images.matchTemplate() 函数的特点 官方文档:https://hyb1996.github.io/AutoJs-Docs/#/images?id=imagesm ...
- SQL语句实现:当A列大于B列时选择A列否则选择B列,当B列大于C列时选择B列否则选择C列
分享一道今天的面试题:SQL语句实现:数据库中有A B C三列,当A列大于B列时选择A列否则选择B列,当B列大于C列时选择B列否则选择C列 第一种:使用case when...then...else ...
- 爬虫基本库的使用---urllib库
使用urllib---Python内置的HTTP请求模块 urllib包含模块:request模块.error模块.parse模块.robotparser模块 发送请求 使用 urllib 的 req ...
- Java 8 - 行为参数化
前言: 以下内容来源于java8实战一书,我将里面学习的内容做一个整理,方便没空读书的小伙伴快速入门实战java8 正文: 假设一个果农收获了一园的苹果,他需要你根据他的条件筛选出满意的苹果 首先我们 ...
- 第三十三章 System V共享内存与信号量综合
用信号量解决生产者.消费者问题 实现shmfifo ip.h #ifndef _IPC_H #define _IPC_H #include <unistd.h> #include < ...