TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术。

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。

字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。

除了TF-IDF以外,互联网上的搜索引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。

TF

TF: Term Frequency, 用于衡量一个词在一个文件中的出现频率。因为每个文档的长度的差别可以很大,因而一个词在某个文档中出现的次数可能远远大于另一个文档,所以词频通常就是一个词出现的次数除以文档的总长度,相当于是做了一次归一化。

TF(t) = (词t在文档中出现的总次数) / (文档的词总数).

IDF

IDF: 逆向文件频率,用于衡量一个词的重要性。计算词频TF的时候,所有的词语都被当做一样重要的,但是某些词,比如”is”, “of”, “that”很可能出现很多很多次,但是可能根本并不重要,因此我们需要减轻在多个文档中都频繁出现的词的权重。 
ID(t) = loge(总文档数/词t出现的文档数)

TfidfVectorizer

sklearn.feature_extraction.text.TfidfVectorizer:可以把一大堆文档转换成TF-IDF特征的矩阵。

TF-IDF的值越大越重要。

scikit-learn文本特征提取之TF-IDF的更多相关文章

  1. 【sklearn文本特征提取】词袋模型/稀疏表示/停用词/TF-IDF模型

    1. 词袋模型 (Bag of Words, BOW) 文本分析是机器学习算法的一个主要应用领域.然而,原始数据的这些符号序列不能直接提供给算法进行训练,因为大多数算法期望的是固定大小的数字特征向量, ...

  2. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

  3. 使用sklearn做文本特征提取

    提取文本的特征,把文本用特征表示出来,是文本分类的前提,使用sklearn做文本的特征提取,需要导入TfidfVectorizer模块. from sklearn.feature_extraction ...

  4. python 文本特征提取 CountVectorizer, TfidfVectorizer

    1. TF-IDF概述 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术.TF-IDF是一种统计方法,用以评 ...

  5. sklearn文本特征提取

    http://cloga.info/2014/01/19/sklearn_text_feature_extraction/ 文本特征提取 词袋(Bag of Words)表征 文本分析是机器学习算法的 ...

  6. Feature extraction - sklearn文本特征提取

    http://blog.csdn.net/pipisorry/article/details/41957763 文本特征提取 词袋(Bag of Words)表征 文本分析是机器学习算法的主要应用领域 ...

  7. TF/IDF计算方法

    FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...

  8. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  9. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  10. Elasticsearch学习之相关度评分TF&IDF

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...

随机推荐

  1. UITabView

    UITabView可是实现列表功能,此文转自https://www.cnblogs.com/longiang7510/p/5367080.html,讲述很详细,都有注视,但是注释解释不太确切,可以自行 ...

  2. day3-02 python入门之基本的数据类型

    目录 一.整型(int) 二.浮点型(float) 三.字符串类型(str) 字符串在python2和python3中的细微区别 四.复数 五.列表(list) 六.数据字典(dict) 定义方式 七 ...

  3. TICK技术栈(三)InfluxDB安装及使用

    1.什么是InfluxDB? InfluxDB是一个用Go语言开发的时序数据库,用于处理高写入和查询负载,专门为带时间戳的数据编写,对DevOps监控,IoT监控和实时分析等应用场景非常有用.通过自定 ...

  4. 【XSY2484】mex

    Description 给你一个无限长的数组,初始的时候都为0,有3种操作: 操作1是把给定区间[l,r] 设为1, 操作2是把给定区间[l,r] 设为0, 操作3把给定区间[l,r] 0,1反转. ...

  5. 监控tomcat,自动启动

    tomcatID=`ps -ef |grep tomcat |grep -v 'grep'|awk '{print $2}'`  tomcatCount=`ps -ef|grep tomcat |gr ...

  6. 清华大学教学内核ucore学习系列(1) bootloader

    ucore是清华大学操作系统课程的实验内核,也是一个开源项目,是不可多得的非常好的操作系统学习资源 https://github.com/chyyuu/ucore_lab.git, 各位同学可以使用g ...

  7. LNMP+Redis

    如果要让php支持redis需要安装php-redis模块.可以再github上下载哦. https://github.com/phpredis/phpredis 配置lnmp环境,太简单了就不演示了 ...

  8. 轰炸行动(bomb):tarjan,拓扑排序

    考场上看错题,没什么好说的. 然而它就是一个大板子. 发的题解勉强还能看.但是我还想再讲讲. 题目的表述是,如果从A能直接或间接到B,那么就不能同时轰炸A和B. 那么我们从图里随便拽出一条有向路径,从 ...

  9. NOIP模拟27

    两个机房又和在一起考试 开场看了看T1,感觉挺水的,过. T2,这个式子有点奇怪,暂时没什么思路,过 T3,好像保留最后几位换个根处理一下就行了,过,先去打T1 于是T1大概打了0.5h,连暴力带正解 ...

  10. zookeeper集群搭建2.7

    http://blog.csdn.net/uq_jin/article/details/51513307