新亚(New Asia)王国有 N 个村庄,由 M 条道路连接。其中一些道路是鹅卵石路,而其它道路是水泥路。保持道路免费运行需要一大笔费用,并且看上去 王国不可能保持所有道路免费。为此亟待制定一个新的道路维护计划。

国王已决定保持尽可能少的道路免费,但是两个不同的村庄之间都应该一条且仅由一条 且仅由一条免费道路的路径连接。同时,虽然水泥路更适合现代交通的需 要,但国王也认为走在鹅卵石路上是一件有趣的事情。所以,国王决定保持刚好 K 条鹅卵石路免费。

举例来说,假定新亚王国的村庄和道路如图 3(a)所示。如果国王希望保持两 条鹅卵石路免费,那么可以如图 3(b)中那样保持道路(1, 2)、(2, 3)、(3, 4)和(3, 5) 免费。该方案满足了国王的要求,因为:(1)两个村庄之间都有一条由免费道 路组成的路径;(2)免费的道路已尽可能少;(3)方案中刚好有两条鹅卵石道路 (2, 3)和(3, 4)

Solution

题意:有黑白两种边,求一科最小生成树使他恰好有k条百边

直接先选k条白边再加黑边是错的,因为加完之后图可能不连通,所以我们先要弄清楚哪些白边是必须加的。

我们先对所有黑边做生成树,在对白色边跑一遍,这样我们就求出了哪些白边是必须要加的。

然后我们再跑一遍生成树,先把必须加的加上,再把K条白边补齐,最后再跑黑边。

接下来就是恶心的判不合法环节,

如果图不连通,GG。

如果必须加的边大与k,GG。

如果加的边到不了k,GG。

Code

#include<iostream>
#include<cstdio>
#define N 20002
#define M 100002
using namespace std;
int f[N],n,m,num,k,kk,tot,tot1,kkk;
bool t[M];
struct node{
int u,v;
}e[M],g[M];
int find(int x){return f[x]=f[x]==x?x:find(f[x]);}
int main(){
scanf("%d%d%d",&n,&m,&k);kkk=kk=k;int u,v,tag;
for(int i=;i<=m;++i){
scanf("%d%d%d",&u,&v,&tag);
if(tag)e[++tot].u=u,e[tot].v=v;
else g[++tot1].u=u,g[tot1].v=v;
}
for(int i=;i<=n;++i)f[i]=i;
for(int i=;i<=tot;++i){
u=find(e[i].u),v=find(e[i].v);
if(u!=v){
f[u]=v;
num++;
}
}
for(int i=;i<=tot1;++i){
u=find(g[i].u);v=find(g[i].v);
if(u!=v){
f[u]=v;
t[i]=;
num++;k--;
}
}
if(num!=n-||k<){
printf("no solution\n");
return ;
}
num=;
for(int i=;i<=n;++i)f[i]=i;
for(int i=;i<=tot1;++i)if(t[i]){
u=find(g[i].u);v=find(g[i].v);
f[u]=v;kk--;num++;
}
for(int i=;i<=tot1;++i)if(!t[i]){
if(!kk)break;
u=find(g[i].u);v=find(g[i].v);
if(u!=v){f[u]=v;kk--;num++;}
}
for(int i=;i<=tot;++i){
u=find(e[i].u),v=find(e[i].v);
if(u!=v){f[u]=v;num++;}
}
if(num!=n-||kk){
printf("no solution\n");
return ;
}
for(int i=;i<=n;++i)f[i]=i;
for(int i=;i<=tot1;++i)if(t[i]){
u=find(g[i].u);v=find(g[i].v);
f[u]=v;kkk--;printf("%d %d 0\n",g[i].u,g[i].v);
}
for(int i=;i<=tot1;++i)if(!t[i]){
if(!kkk)break;
u=find(g[i].u);v=find(g[i].v);
if(u!=v){
f[u]=v;
kkk--;printf("%d %d 0\n",g[i].u,g[i].v);
}
}
for(int i=;i<=tot;++i){
u=find(e[i].u),v=find(e[i].v);
if(u!=v){
f[u]=v;
printf("%d %d 1\n",e[i].u,e[i].v);
}
}
return ;
}

[APIO2008]免费道路(生成树)的更多相关文章

  1. bzoj 3624: [Apio2008]免费道路 生成树的构造

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 111  Solved: 4 ...

  2. BZOJ 3624: [Apio2008]免费道路 [生成树 并查集]

    题意: 一张图0,1两种边,构造一个恰有k条0边的生成树 优先选择1边构造生成树,看看0边是否小于k 然后保留这些0边,补齐k条,再加1边一定能构成生成树 类似kruskal的证明 #include ...

  3. 题解 Luogu P3623 [APIO2008]免费道路

    [APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...

  4. BZOJ 3624: [Apio2008]免费道路

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1201  Solved:  ...

  5. [Apio2008]免费道路[Kruscal]

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1292  Solved:  ...

  6. P3623 [APIO2008]免费道路

    3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special Judge Submit: 2143 Solved: 88 ...

  7. Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路

    首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...

  8. [BZOJ3624][Apio2008]免费道路

    [BZOJ3624][Apio2008]免费道路 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入”. 题解 第一步,先尽量加入 c = 1 的边,若未形成一个连通块,则得到必须加入 ...

  9. [APIO2008]免费道路

    [APIO2008]免费道路 BZOJ luogu 先把必须连的鹅卵石路连上,大于k条no solution 什么样的鹅卵石路(u,v)必须连?所有水泥路都连上仍然不能使u,v连通的必须连 补全到k条 ...

随机推荐

  1. Velocity中判断是否为空

    方法一: 使用 #ifnull() 或 #ifnotnull() eg:#ifnull ($foo) 要使用这个特性必须在velocity.properties文件中加入: userdirective ...

  2. Day 3-6 生成器&迭代器

    ---恢复内容开始--- 列表生成式: list = [i*i for i in range(20)] # 这就是一个列表生成式 print(list) # [0, 1, 4, 9, 16, 25, ...

  3. PhpStorm本地断点调试

    一.断点调试php环境搭建 1.检测本地php环境是否安装了Xdebug 在本地输出phpinfo():搜索Xdebug;如下图  如果没有安装,安装操作Xdebug如下: 将phpinfo();的信 ...

  4. 集合之HashMap(含JDK1.8源码分析)

    一.前言 之前的List,讲了ArrayList.LinkedList,反映的是两种思想: (1)ArrayList以数组形式实现,顺序插入.查找快,插入.删除较慢 (2)LinkedList以链表形 ...

  5. 微服务架构中APIGateway原理

    背景 我们知道在微服务架构风格中,一个大应用被拆分成为了多个小的服务系统提供出来,这些小的系统他们可以自成体系,也就是说这些小系统可以拥有自己的数据库,框架甚至语言等,这些小系统通常以提供 Rest ...

  6. mongodb3的使用

    1.在windows下载安装mongodb 将下载好的zip压缩文件解压并重命名为mongo-3.0.6,并在根目录下新建文件夹data用于存放数据 2.启动mongod守护进程 使用命令mongod ...

  7. 阿里云ECS服务器,CentOS 7.4配置jdk+tomcat+mysql

    参考博客: https://mp.weixin.qq.com/s?__biz=MzIxMzk3Mjg5MQ==&mid=2247484020&idx=1&sn=6e0aa07f ...

  8. Python——Flask框架——数据库

    一.数据库框架 Flask-SQLAlchemy (1)安装: pip install flask-sqlalchemy (2)Flask-SQLAlchemy数据库URL 数据库引擎 URL MyS ...

  9. 获取网络图片并显示在picturbox上,byte[]数组转换成Image:

    private void getWebPicture_Click(object sender, EventArgs e) { WebRequest request = WebRequest.Creat ...

  10. pip 指定版本

    要用 pip 安装特定版本的 Python 包,只需通过 == 操作符 指定,例如: pip install -v pycrypto==2.3 将安装 pycrypto 2.3 版本.