CF917D Stranger Trees
CF917D Stranger Trees
给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合。
矩阵树定理+高斯消元
我们答案为\(f_k\)。假设我们呢将原树上的边权设为\(x\),其他的边权设为\(1\),那么我们做一次矩阵树定理求出来的东西就是\(\displaystyle \sum_{i=0}^{n-1}f_i x^i\)。于是我们找\(n\)个不同的\(x\),然后高斯消元就行了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define mod 1000000007
#define N 105
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n;
ll a[N][N],d[N];
ll w[N][N];
ll c[N][N],ans[N];
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
void Gauss(ll a[N][N],int n) {
for(int i=1;i<=n;i++) {
for(int j=i+1;j<=n;j++) {
ll t=ksm(a[i][i],mod-2)*a[j][i]%mod;
for(int k=i;k<=n+1;k++) a[j][k]=(a[j][k]-t*a[i][k]%mod+mod)%mod;
}
}
}
int main() {
n=Get();
for(int i=1;i<n;i++) {
int x=Get(),y=Get();
a[x][y]=a[y][x]=1;
d[x]++,d[y]++;
}
for(int v=1;v<=n;v++) {
memset(w,0,sizeof(w));
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
if(i==j) w[i][j]=d[i]*v+n-1-d[i];
else if(a[i][j]) w[i][j]=mod-v;
else w[i][j]=mod-1;
}
}
Gauss(w,n-1);
c[v][n+1]=1;
for(int i=1;i<n;i++) c[v][n+1]=c[v][n+1]*w[i][i]%mod;
ll now=1;
for(int i=1;i<=n;i++,now=now*v%mod) c[v][i]=now;
}
Gauss(c,n);
for(int i=n;i>=1;i--) {
for(int j=i+1;j<=n;j++) {
c[i][n+1]=(c[i][n+1]-ans[j]*c[i][j]%mod+mod)%mod;
}
ans[i]=ksm(c[i][i],mod-2)*c[i][n+1]%mod;
}
for(int i=1;i<=n;i++) cout<<ans[i]<<" ";
return 0;
}
容斥原理+prufer序列
我们的原理就是选定\(k\)个边与原树重合,这样我们将原树分成了\(n-k\)个联通块。我们求出此时的生成树方案树,表示至少\(k\)条边重合的方案树,然后容斥就好了。
具体求法如下:
给定一颗森林,每个联通块的大小是\(a_i\),那么这个森林的生成树方案树我们也可以用\(prufer\)序列来求。将每个连通块视作点,设第\(i\)个块出现的次数为\(t_i\),则一个序列的答案为\(\prod a_i^{t_i}\)。
我们设所有\(prufer\)序列为\(P\),则我们有一下变换:
\displaystyle
ans&=(\prod_{i=1}^k a_i)\sum_{p\in P}\prod_{i=1}^{k-2}a_{p_i}\\
&=(\prod_{i=1}^k a_i)\prod_{i=1}^{k-2}\sum_{j=1}^ka_j\\
&=(\prod_{i=1}^k a_i)\prod_{i=1}^{k-2}n^{k-2}\\
\end{align}
\]
\(\sum_{p\in P}\prod_{i=1}^{k-2}a_{p_i}=\prod_{i=1}^{k-2}\sum_{j=1}^ka_j\)就是一个经典的和式变换。
得到上述的结论过后,我们就可以树形\(DP\)了。设\(f_{i,j,k}\)表示已\(i\)为根的子树中,分成了\(j\)个连通块,\(i\)所在的连通块的大小为\(k\)的生成树数量。
代码:
没写
CF917D Stranger Trees的更多相关文章
- CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...
- CF917D Stranger Trees【矩阵树定理,高斯消元】
题目链接:洛谷 题目大意:给定一个$n$个节点的树$T$,令$ans_k=\sum_{T'}[|T\cap T'|=k]$,即有$k$条边重合.输出$ans_0,ans_1,\ldots,ans_{n ...
- [CF917D]Stranger Trees[矩阵树定理+解线性方程组]
题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...
- 【CF917D】Stranger Trees 树形DP+Prufer序列
[CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...
- 【CF917D】Stranger Trees
题目 看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了 众所周知矩阵树求得是这个 \[\sum_{T}\prod_{e\in T}w_e\] 而我们现在的这个问题有些鬼畜了, ...
- 题解 CF917D 【Stranger Trees】
生成树计数问题用矩阵树定理来考虑. 矩阵树定理求得的为\(\sum\limits_T\prod\limits_{e\in T}v_e\),也就是所有生成树的边权积的和. 这题边是不带权的,应用矩阵树定 ...
- codeforces 917D Stranger Trees
题目链接 正解:矩阵树定理+拉格朗日插值. 一下午就搞了这一道题,看鬼畜英文题解看了好久.. 首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法 ...
- Codeforces917D. Stranger Trees
$n \leq 100$的完全图,对每个$0 \leq K \leq n-1$问生成树中与给定的一棵树有$K$条公共边的有多少个,答案$mod \ \ 1e9+7$. 对这种“在整体中求具有某些特性的 ...
- 题解-Codeforces917D Stranger Trees
Problem \(\mathrm{Codeforces~917D}\) 题意概要:一棵 \(n\) 个节点的无向树.问在 \(n\) 个点的完全图中,有多少生成树与原树恰有 \(k\) 条边相同,对 ...
随机推荐
- 开源的api文档管理系统
api文档 php 在项目中,需要协同开发,所以会写许多API文档给其他同事,以前都是写一个简单的TXT文本或Word文档,口口相传,这种方式比较老土了,所以,需要有个api管理系统专门来管理这些ap ...
- 从零开始学安全(二十五)●用nmap做端口扫描
以上是常用的端口扫描 -T 用法 每个级别发包时间 当没有使用T 时默认的使用T3级别发包 半开扫描 先探测主机是否存活 再用-sS 扫描端口 容易造成syn 包攻击 就是利用僵尸主机 进 ...
- mysql配置优化浅谈(一)
MySQL对于web架构性能的影响最大,也是关键的核心部分.MySQL的设置是否合理优化,直接影响到web的速度和承载量!同时,MySQL也是优化难度最大的一个部分,不但需要理解一些MySQL专业知识 ...
- How std::cout works [duplicate]
Question: I accidentally found: cout << cout; The output is some address. What does this addre ...
- Java马士兵高并发编程视频学习笔记(一)
1.同一个资源,同步和非同步的方法可以同时调用 package com.dingyu; public class Y { public synchronized void m1() { System. ...
- hihoCoder编程练习赛52
题目1 : 字符串排序 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 一般我们在对字符串排序时,都会按照字典序排序.当字符串只包含小写字母时,相当于按字母表" ...
- CSS概念【记录】
1.CSS语法 2.@规则 3.注释 4.层叠 5.优先级 6.继承 7.值 8.块格式化上下文 9.盒模型 10.层叠上下文 11.可替换元素 12.外边距合并 13.包含块 14.视觉格式化模型 ...
- 小tips:Hbuilder编辑器开启less自动编译为css的方法
1.首先,依次打开菜单栏->工具->预编译器设置,打开后是这样的: 2.然后点击新建. 3.文件后缀为.less触发命令地址就是lessc.cmd所在的地址,先用npm全局安装less, ...
- 洛谷P2234 [HNOI2002]营业额统计
题目描述 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是 ...
- 【代码笔记】Web-JavaScript-JavaScript错误
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...