欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解

题目传送门

UPD(2018-04-01):用Latex重打了公式……

题意概括

把一个整数序列划分成任意连续的段,使得划分出来的每一段的价值和最大。

对于某一段,价值的计算公式为 $V=ax^2+bx+c$,其中 $x$ 为当前段的数值和。

题解

这题是博主大蒟蒻的第一道斜率优化DP题……

C++:while (1) 懵逼++;

Pascal:while (true) do inc(懵逼);

本题首先一看就是 DP 题。

但是一看 $1\leq n\leq 1000000,-5\leq a\leq -1,|b|\leq 10000000,|c|\leq 10000000,1\leq xi\leq 100$

彻底吓懵!

一脸懵逼……

还是一脸懵逼……

突(bai)然(du)发(yi)现(xia)可以用斜率优化。

为了减少代码量,好心的出题人特意规定了$-5\leq a\leq -1$

我们来考虑一下:

用 $dp_i$ 表示划分到前$i$个所能得到的最大价值和。

我们设 $sum_i$ 为前$i$个的前缀和,

那么

$$dp_i=max\{dp_j+a(sum_i-sum_j)^2+b(sum_i-sum_j)+c\}  (0\leq j<i)$$

貌似是一个$n^2$的状态转移方程。

其实就是一个$n^2$的状态转移方程。

接下来就是斜率优化了!

我们假设对于$dp_i$来说,从$j$转移比从$k$转移更优秀($j>k$),那么有如下的表达式:

$$dp_j+a(sum_i-sum_j)^2+b(sum_i-sum_j)+c>dp_k+a(sum_i-sum_k)^2+b(sum_i-sum_k)+c$$

so

$$dp_j+a(sum_i-sum_j)^2+b(sum_i-sum_j)>dp_k+a(sum_i-sum_k)^2+b(sum_i-sum_k)$$

$$dp_j+a\cdot sum_i^2-2a\cdot sum_isum_j+a\cdot sum_j^2+b\cdot sum_i-b\cdot sum_j>dp_k+a\cdot sum_i^2-2a\cdot sum_isum_k+a\cdot sum_k^2+b\cdot sum_i-b\cdot sum_k$$

$$dp_j-2a\cdot sum_isum_j+a\cdot sum_j^2-b\cdot sum_j>dp_k-2a\cdot sum_isum_k+a\cdot sum_k^2-b\cdot sum_k$$

$$(dp_j+a\cdot sum_j^2-b\cdot sum_j)- (dp_k+a\cdot sum_k^2-b\cdot sum_k)>2a\cdot sum_i(sum_j-sum_k)$$

so

$$\frac{(dp_j+a\cdot sum_j^2-b\cdot sum_j)-(dp_k+a\cdot sum_k^2-b\cdot sum_k)}{sum_j-sum_k}>2a\cdot sum_i$$

我们设$x_p=sum_p,y_p=dp_p+a\cdot sum_p^2-b\cdot sum_p$,

那么原来的方程可以表示为:

$$\frac{y_j-y_k}{x_j-x_k}>2a\cdot sum_i$$

左边不就是斜率的表达式吗!!

所以叫斜率优化。

当然前面的只是一些化简,关键是接下来的:

我们设$g_{i,j}=\Large\frac{y_i-y_j}{x_i-x_j}$

注意$a$是一个负数,而且$sum_i$是随着$i$的增大而增大的,所以$2a\cdot sum_i$一定是单调递减的!

如果$g_{i,j}>g_{j,k}$那么决策$j$一定是没用的!$(k<j<i)$

分两种情况进行讨论:

1. 如果$g_{i,j}>2a\cdot sum_x$,那么说明决策$i$优于决策$j$,那么$j$就是没用的。就算以后$2a\cdot sum_x$会变,$x$只能变大,所以 $2a\cdot sum_x$也只能变小,所以该表达式仍然满足。

2. 如果$g_{i,j}<2a\cdot sum_x$,那么$g_{j,k}<2a\cdot sum_x$,那么$j$就会比$k$劣,同样也会把$j$扔掉。

然后我们单调队列弄几下就好了。

在$dp$的过程中,按照“如果$g_{i,j}>g_{j,k}$那么决策$j$一定是没用的!”的规则入队,按照 如果$g_{i,j}>2a\cdot sum_x$的规则出队即可。

代码

#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=+;
int n,head,tail;
LL a,b,c,r[N],sum[N],x[N],y[N],dp[N],q[N];
double g(int i,int j){
double xi=x[i],xj=x[j],yi=y[i],yj=y[j];
return (yi-yj)/(xi-xj);
}
int main(){
scanf("%d%lld%lld%lld",&n,&a,&b,&c);
sum[]=;
for (int i=;i<=n;i++)
scanf("%lld",&r[i]),sum[i]=sum[i-]+r[i];
memset(x,,sizeof x);
memset(y,,sizeof y);
head=,tail=;
q[++tail]=;
for (int i=;i<=n;i++){
while (head+<=tail&&g(q[head],q[head+])>*a*sum[i])
head++;
LL s=sum[i]-sum[q[head]];
dp[i]=dp[q[head]]+a*s*s+b*s+c;
x[i]=sum[i],y[i]=dp[i]+a*sum[i]*sum[i]-b*sum[i];
while (head+<=tail&&g(q[tail-],q[tail])<g(q[tail],i))
tail--;
q[++tail]=i;
}
printf("%lld",dp[n]);
return ;
}

BZOJ1911 [Apio2010]特别行动队 - 动态规划 - 斜率优化的更多相关文章

  1. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

  2. BZOJ1911 [Apio2010]特别行动队 【斜率优化】

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Submit: 5005  Solved: 2455 [Submit][Sta ...

  3. 2018.09.07 bzoj1911: [Apio2010]特别行动队(斜率优化dp)

    传送门 斜率优化dp经典题. 题目中说的很清楚,设f[i]表示前i个数分配出的最大值. 那么有: f[i]=max(f[j]+A∗(sum[i]−sum[j])2+B∗(sum[i]−sum[j])+ ...

  4. BZOJ1911: [Apio2010]特别行动队(dp 斜率优化)

    题意 题目链接 Sol 裸的斜率优化,注意推导过程中的符号问题. #include<bits/stdc++.h> #define Pair pair<int, int> #de ...

  5. 【BZOJ-1911】特别行动队 DP + 斜率优化

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3478  Solved: 1586[Submit][Statu ...

  6. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

  7. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

  8. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

  9. P3628 [APIO2010]特别行动队(斜率优化dp)

    P3628 [APIO2010]特别行动队 设$s[i]$为战斗力前缀和 显然我们可以列出方程 $f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$ $f[i]= ...

随机推荐

  1. 一个简单的Loading控件

    实现效果如下: 使用方法: 在layout文件中添加以下代码: <com.example.jack.ui.widget.RingLoading android:layout_width=&quo ...

  2. vue 上实现无缝滚动播放文字系统公告

    首先实现效果,当时的需求做的系统公告框设定一个宽度,超宽滚动播放,没超宽则静态展示,有了需求,想了下实现原理,最开始打算js更改字体内容的方式,但是想了下感觉会有点麻烦,想起之前做了表格的左侧边固定, ...

  3. vi快速查找

    用vim时,想高亮显示一个单词并查找的方发,将光标移动到所找单词. 1: shift + "*"  向下查找并高亮显示 2: shift + "#"  向上查找 ...

  4. spring各版本jar包和源码

    spring各版本jar包和源码 spring历史版本源码:https://github.com/spring-projects/spring-framework/tags spring历史jar包和 ...

  5. Confluence 6 编辑站点欢迎消息

    通过编辑欢迎信息能够为你站点的主页面添加一些个人信息. 站点的欢迎信息显示在站点主面板的右侧,这是你对站点添加声明,连接,有关你项目组美好回忆照片的完美位置. 你需要 Confluence 管理员权限 ...

  6. Confluence 6 编辑自定义 Decorators

    希望对 Confluence 的 decorator 进行编辑的话,你需要具有良好的 HTML 知识和能够理解  Velocity 模板语言. 希望编辑 decorator 文件: 进入  Confl ...

  7. 1010:Tempter of the Bone

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010 Problem Description The doggie found a bone in a ...

  8. Python编程:从入门到实践(选记)

    本文参考< Python 编程:从入门到实践>一书,作者: [ 美 ] Eric Matthes 第1章 起步 1.1     搭建python环境 在不同的操作系统中, Python 存 ...

  9. spring data jpa 全面解析(实践 + 源码分析)

    前言 本文将从示例.原理.应用3个方面介绍spring data jpa. 以下分析基于spring boot 2.0 + spring 5.0.4版本源码 概述 JPA是什么? JPA (Java ...

  10. C++ 关闭显示器

    好困,想躺一下,关灯.上床,笔记本的屏幕还亮着,好刺眼,睡不着! 脑子里出现一个疑问,怎么用C++写一个关闭屏幕的小程序呢? 参考了网上已有的例子,最简化: #include <windows. ...