【CF446D】DZY Loves Games
题解:
不错的题目
首先要求的黑点个数非常多
比较容易想到矩阵乘法
于是我们可以求出从某个黑点出发到任意一个黑点之间的概率
发现不同出发点带来的变化只有常数项
于是我们可以预处理出从每个方程转移的系数
处理的方法就是 当行a减去k倍的行b时
我们同时更新行b被多少行更新了
求完之后我们只需要求它的k-2次幂
当然我们还需要求出起点1到每个黑点的概率(一起求)
矩阵乘法的比较优的写法是这样的
rep(i,,n)
rep(j,,n)
if (x.a[j][i])
rep(k,,n)
z.a[j][k]+=x.a[j][i]*y.a[i][k];
要再快可以使用分块乘法
高斯消元的时候由于f[i][i]=1,所以可以不去找最大值
因为那样的话我们处理哪些由哪些转移还要记录pos,比较麻烦
cf还卡栈。。快速幂要写成非递归形式的
代码:
#include <bits/stdc++.h>
#define rint register int
#define IL inline
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
using namespace std;
const int N=6e5;
const int N2=;
int head[N2],v[N2],du[N2],l,n,m,k,M[N2][N2];
double o2[N2];
double f[N2][N2],jl[N2][N2];
double ee=1.00000000000000000;
struct re{
int a,b;
}a[N*];
void arr(int x,int y)
{
a[++l].a=head[x];
a[l].b=y;
head[x]=l;
}
struct re1{
double a[][];
re1()
{
rep(i,,n)
rep(j,,n) a[i][j]=;
}
}o;
re1 z;
re1 js(re1 x,re1 y)
{
memset(z.a,,sizeof(z.a));
rep(i,,n)
rep(j,,n)
if (x.a[i][j])
rep(k,,n)
z.a[i][k]+=x.a[i][j]*y.a[j][k];
return(z);
}
re1 y;
re1 o3;
re1 fsp(rint x)
{
memset(y.a,,sizeof(y.a));
o3=o;
rep(i,,n) y.a[i][i]=;
while (x)
{
if (x&) y=js(y,o3);
x>>=;
o3=js(o3,o3);
}
return(y);
}
int ve[N2],cnt=;
void Gauss()
{
rep(i,,n) jl[i][i]=;
rep(i,,n)
{
rep(j,,n)
if (i!=j)
{
double t=-f[j][i]/f[i][i];
rep(k,,n) f[j][k]+=t*f[i][k];
rep(k,,n) jl[j][k]+=t*jl[i][k];
}
}
rep(i,,n)
if (v[i])
{
cnt=;
double tmp=ee/du[i];
rep(j,,n)
if (M[i][j]) ve[++cnt]=j;
rep(k,,n)
if (v[k])
{
double ans=;
rep(j,,cnt) ans+=M[i][ve[j]]*jl[k][ve[j]]*tmp;
o.a[i][k]=ans;
}
}
rep(j,,n)
if (v[j])
o2[j]=jl[j][];
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n>>m>>k;
rep(i,,n)
{
cin>>v[i];
}
rep(i,,m)
{
int x,y;
cin>>x>>y;
arr(x,y); arr(y,x);
M[x][y]++; M[y][x]++;
du[x]++; du[y]++;
}
rep(i,,n)
{
f[i][i]=-;
for (int u=head[i];u;u=a[u].a)
{
int vv=a[u].b;
if (!v[vv]) f[i][vv]+=ee/du[vv];
}
}
Gauss();
double ans=;
if (k!=)
{
re1 ans2=fsp(k-);
rep(i,,n)
if (v[i]) ans+=o2[i]*ans2.a[i][n];
} else
if (k==) ans=o2[n];
else ans=;
printf("%.9f",ans);
return ;
}
【CF446D】DZY Loves Games的更多相关文章
- 【CF446D】DZY Loves Games 高斯消元+矩阵乘法
[CF446D]DZY Loves Games 题意:一张n个点m条边的无向图,其中某些点是黑点,1号点一定不是黑点,n号点一定是黑点.问从1开始走,每次随机选择一个相邻的点走过去,经过恰好k个黑点到 ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- 【BZOJ3512】DZY Loves Math IV(杜教筛)
[BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...
- 【BZOJ3309】DZY Loves Math 解题报告
[BZOJ3309]DZY Loves Math Description 对于正整数\(n\),定义\(f(n)\)为\(n\)所含质因子的最大幂指数.例如\(f(1960)=f(2^3×5^1×7^ ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
- 【题解】DZY Loves Chinese
[题解]DZY Loves Chinese II 不吐槽这题面了... 考虑如何维护图的连通性,如果把图的变成一颗的\(dfs\)生成树,那么如果把一个节点的父边和他接下来所有的返祖边删除,那么我们就 ...
- 【BZOJ3569】DZY Loves Chinese II
[BZOJ3569]DZY Loves Chinese II 题面 bzoj 题目大意: 给你一张\(N(1\leq N\leq 10^5)\)个点\(M(1\leq M\leq 5\times 10 ...
- 【BZOJ3309】DZY Loves Math
Time Limit: 5000 ms Memory Limit: 512 MB Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * ...
随机推荐
- installshield路径
InstallShield系统变量 BATCH_INSTALL 指示当传输文件采用LOCKEDFILE或SHAREDFILE时是否锁定文件 CMDLINE Setup.exe传递的命令行参数 COMM ...
- 解决Windows 10笔记本接显示器分屏后没有声音的问题
Windows 10 版本号:17763.292 1.首先右键点击任务栏托盘中的[扬声器]图标,选择[声音],如下图所示. 2.选择[播放],然后选择[扬声器],再点击[设为默认值],如下所示. 3. ...
- 020_iPhone救命稻草
一.如何对iPhone强制恢复出厂设置 1.在"通用"->"设置"->"还原全部设置",但是我的不知道为啥除了设置完开机密码后, ...
- java学习——异常处理
类 Throwable类 Java 语言中所有错误或异常的超类.只有当对象是此类(或其子类之一)的实例时,才能通过 Java 虚拟机或者 Java throw语句抛出.类似地,只有此类 ...
- socket通讯---TcpClient
IPHostEntry ipe = Dns.GetHostEntry(Dns.GetHostName()); IPAddress ipa = ipe.AddressList[0]; System.Ne ...
- Oracle Ora 错误解决方案合集
注:本文来源于 < Oracle学习笔记 --- Oracle ORA错误解决方案 > ORA-00001: 违反唯一约束条件 (.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发 ...
- Confluence 6 Oracle 测试你的数据库连接
在你的数据库设置界面,有一个 测试连接(Test connection)按钮可以检查: Confluence 可以连接你的数据库服务器 数据库的字符集编码是否正确 你的数据库用户是否具有需要的权限 你 ...
- (一)STL体系结构基础介绍
一.STL六大部件 容器(Containers):存放元素,内存由分配器搞定 分配器(Allocator):支持容器的内存分配 算法:操作容器元素的函数.与OO不同(面向对象将元素与函数放到一个类里) ...
- Linux 用户(user)和用户组(group)管理概述
一.理解Linux的单用户多任务,多用户多任务概念: Linux 是一个多用户.多任务的操作系统:我们应该了解单用户多任务和多用户多任务的概念: 1.Linux 的单用户多任务:单用户多任务:比如我们 ...
- java多线程快速入门(十七)
多线程通讯实例(必须要有多个线程.必须要管理同一个变量:线程A生产一个变量,线程B消费一个变量) package com.cppdy; class User { public String usern ...