shell高效处理文本(1):xargs并行处理
xargs具有并行处理的能力,在处理大文件时,如果应用得当,将大幅提升效率。
xargs详细内容(全网最详细):https://www.cnblogs.com/f-ck-need-u/p/5925923.html
效率提升测试结果
先展示一下使用xargs并行处理提升的效率,稍后会解释下面的结果。
测试环境:
- win10子系统上
- 32G内存
- 8核心cpu
- 测试对象是一个放在固态硬盘上的10G文本文件(如果你需要此测试文件,点此下载,提取码: semu)
下面是正常情况下wc -l统计这个10G文件行数的结果,花费16秒,多次测试,cpu利用率基本低于80%。
$ /usr/bin/time wc -l 9.txt
999999953 9.txt
4.56user 3.14system 0:16.06elapsed 47%CPU (0avgtext+0avgdata 740maxresident)k
0inputs+0outputs (0major+216minor)pagefaults 0swaps
通过分割文件,使用xargs的并行处理功能进行统计,花费时间1.6秒,cpu利用率752%:
$ /usr/bin/time ./b.sh
999999953
7.67user 4.54system 0:01.62elapsed 752%CPU (0avgtext+0avgdata 1680maxresident)k
0inputs+0outputs (0major+23200minor)pagefaults 0swaps
用grep从这个10G的文本文件中筛选数据,花费时间24秒,cpu利用率36%:
$ /usr/bin/time grep "10000" 9.txt >/dev/null
6.17user 2.57system 0:24.19elapsed 36%CPU (0avgtext+0avgdata 1080maxresident)k
0inputs+0outputs (0major+308minor)pagefaults 0swaps
通过分割文件,使用xargs的并行处理功能进行统计,花费时间1.38秒,cpu利用率746%:
$ /usr/bin/time ./a.sh
6.01user 4.34system 0:01.38elapsed 746%CPU (0avgtext+0avgdata 1360maxresident)k
0inputs+0outputs (0major+31941minor)pagefaults 0swaps
速度提高的不是一点点。
xargs并行处理简单示例
要使用xargs的并行功能,只需使用"-P N"选项即可,其中N是指定要运行多少个并行进程,如果指定为0,则使用尽可能多的并行进程数量。
需要注意的是:
- 既然要并行,那么xargs必须得分批传送管道的数据,xargs的分批选项有"-n"、"-i"、"-L",如果不知道这些内容,看本文开头给出的文章。
- 并行进程数量应该设置为cpu的核心数量。如果设置为0,在处理时间较长的情况下,很可能会并发几百个甚至上千个进程。在我测试一个花费2分钟的操作时,创建了500多个进程。
- 在本文后面,还给出了其它几个注意事项。
例如,一个简单的sleep命令,在不使用"-P"的时候,默认是一个进程按批的先后进行处理:
[root@xuexi ~]# time echo {1..4} | xargs -n 1 sleep
real 0m10.011s
user 0m0.000s
sys 0m0.011s
总共用了10秒,因为每批传一个参数,第一批睡眠1秒,然后第二批睡眠2秒,依次类推,还有3秒、4秒,共1+2+3+4=10秒。
如果使用-P指定4个处理进程,它将以处理时间最长的为准:
[root@xuexi ~]# time echo {1..4} | xargs -n 1 -P 4 sleep
real 0m4.005s
user 0m0.000s
sys 0m0.007s
再例如,find找到一大堆文件,然后用grep去筛选:
find /path -name "*.log" | xargs -i grep "pattern" {}
find /path -name "*.log" | xargs -P 4 -i grep "pattern" {}
上面第一个语句,只有一个grep进程,一次处理一个文件,每次只被其中一个cpu进行调度。也就是说,它无论如何,都只用到了一核cpu的运算能力,在极端情况下,cpu的利用率是100%。
上面第二个语句,开启了4个并行进程,一次可以处理从管道传来的4个文件,在同一时刻这4个进程最多可以被4核不同的CPU进行调度,在极端情况下,cpu的利用率是400%。
并行处理示例
下面是文章开头给出的实验结果对应的示例。一个10G的文本文件9.txt,这个文件里共有9.9亿(具体的是999999953)行数据。
首先一个问题是,怎么统计这么近10亿行数据的?wc -l,看看时间花费。
$ /usr/bin/time wc -l 9.txt
999999953 9.txt
4.56user 3.14system 0:16.06elapsed 47%CPU (0avgtext+0avgdata 740maxresident)k
0inputs+0outputs (0major+216minor)pagefaults 0swaps
总共花费了16.06秒,cpu利用率是47%。
随后,我把这10G数据用split切割成了100个小文件,在提升效率方面,split切割也算是妙用无穷:
split -n l/100 -d -a 3 9.txt fs_
这100个文件,每个105M,文件名都以"fs_"为前缀:
$ ls -lh fs* | head -n 5
-rwxrwxrwx 1 root root 105M Oct 6 17:31 fs_000
-rwxrwxrwx 1 root root 105M Oct 6 17:31 fs_001
-rwxrwxrwx 1 root root 105M Oct 6 17:31 fs_002
-rwxrwxrwx 1 root root 105M Oct 6 17:31 fs_003
-rwxrwxrwx 1 root root 105M Oct 6 17:31 fs_004
然后,用xargs的并行处理来统计,以下是统计脚本b.sh的内容:
#!/usr/bin/env bash
find /mnt/d/test -name "fs*" |\
xargs -P 0 -i wc -l {} |\
awk '{sum += $1}END{print sum}'
上面用-P 0选项指定了尽可能多地开启并发进程数量,如果要保证最高效率,应当设置并发进程数量等于cpu的核心数量(在我的机器上,应该设置为8),因为在操作时间较久的情况下,可能会并行好几百个进程,这些进程之间进行切换也会消耗不少资源。
然后,用这个脚本去统计测试:
$ /usr/bin/time ./b.sh
999999953
7.67user 4.54system 0:01.62elapsed 752%CPU (0avgtext+0avgdata 1680maxresident)k
0inputs+0outputs (0major+23200minor)pagefaults 0swaps
只花了1.62秒,cpu利用率752%。和前面单进程处理相比,时间是原来的16分之1,cpu利用率是原来的好多好多倍。
再来用grep从这个10G的文本文件中筛选数据,例如筛选包含"10000"字符串的行:
$ /usr/bin/time grep "10000" 9.txt >/dev/null
6.17user 2.57system 0:24.19elapsed 36%CPU (0avgtext+0avgdata 1080maxresident)k
0inputs+0outputs (0major+308minor)pagefaults 0swaps
24秒,cpu利用率36%。
再次用xargs来处理,以下是脚本:
#!/usr/bin/env bash
find /mnt/d/test -name "fs*" |\
xargs -P 8 -i grep "10000" {} >/dev/null
测试结果:
$ /usr/bin/time ./a.sh
6.01user 4.34system 0:01.38elapsed 746%CPU (0avgtext+0avgdata 1360maxresident)k
0inputs+0outputs (0major+31941minor)pagefaults 0swaps
花费时间1.38秒,cpu利用率746%。
这比用什么ag、ack替代grep有效多了。
提升哪些效率以及注意事项
xargs并行处理用的好,能大幅提升效率,但这是有条件的。
首先要知道,xargs是如何提升效率的,以grep命令为例:
ls fs* | xargs -i -P 8 grep 'pattern' {}
之所以xargs能提高效率,是因为xargs可以分批传递管道左边的结果给不同的并发进程,也就是说,xargs要高效,得有多个文件可处理。对于上面的命令来说,ls可能输出了100个文件名,然后1次传递8个文件给8个不同的grep进程。
还有一些注意事项:
1.如果只有单核心cpu,想提高效率,没门
2.xargs的高效来自于处理多个文件,如果你只有一个大文件,那么需要将它切割成多个小片段
3.由于是多进程并行处理不同的文件,所以命令的多行输出结果中,顺序可能会比较随机
例如,统计行数时,每个文件的出现顺序是不受控制的。
10000000 /mnt/d/test/fs_002
9999999 /mnt/d/test/fs_001
10000000 /mnt/d/test/fs_000
10000000 /mnt/d/test/fs_004
9999999 /mnt/d/test/fs_005
9999999 /mnt/d/test/fs_003
10000000 /mnt/d/test/fs_006
9999999 /mnt/d/test/fs_007
不过大多数时候这都不是问题,将结果排序一下就行了。
4.xargs提升效率的本质是cpu的利用率,因此会有内存、磁盘速度的瓶颈。如果内存小,或者磁盘速度慢(将因为加载数据到内存而长时间处于io等待的睡眠状态),xargs的并行处理基本无效。
例如,将上面10G的文本文件放在虚拟机上,机械硬盘,内存2G,将会发现使用xargs并行和普通的命令处理几乎没有差别,因为绝大多数时间都花在了加载文件到内存的io等待上。
下一篇文章将介绍GNU parallel并行处理工具,它的功能更丰富,效果更强大。
shell高效处理文本(1):xargs并行处理的更多相关文章
- shell脚本--显示文本内容
shell脚本显示文本内容及相关的常用命令有cat.more.less.head.tail.nl 首先是cat,cat最常用的就是一次性显示文件的所有内容,如果一个文件的内容很多的话,那么就不是很方便 ...
- shell编程系列24--shell操作数据库实战之利用shell脚本将文本数据导入到mysql中
shell编程系列24--shell操作数据库实战之利用shell脚本将文本数据导入到mysql中 利用shell脚本将文本数据导入到mysql中 需求1:处理文本中的数据,将文本中的数据插入到mys ...
- Shell命令之文本操作
前言 在Linux中,文本处理操作是最常见的,应用非常广泛,如果能熟练掌握,可以大大提高开发效率. awk/sed/grep是文本操作领域的“三剑客”,学会了这3个命令就可以应对绝大多数文本处理场景. ...
- linux —— shell 编程(文本处理)
导读 本文为博文linux —— shell 编程(整体框架与基础笔记)的第4小点的拓展.(本文所有语句的测试均在 Ubuntu 16.04 LTS 上进行) 目录 基本文本处理 流编辑器sed aw ...
- shell 命令合并文本
之前想把代码打印出来看来着,后来合并完之后放在word里发现有2000多页,然后放弃了~anyway,这个命令还是挺有用的. 比如我有文本a001.dat, a002.dat, a003.dat .. ...
- shell命令技巧——文本去重并保持原有顺序
简单来说,这个技巧相应的是例如以下一种场景 假设有文本例如以下 cccc aaaa bbbb dddd bbbb cccc aaaa 如今须要对它进行去重处理.这个非常easy,sort -u就能够搞 ...
- Shell正则表达式和文本处理工具
作业一:整理正则表达式博客 一.什么是正则 正则就是用一些具有特殊含义的符号组合而成(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. 通配符是由shell解释得. ...
- shell学习笔记2-find和xargs
1,find命令形式 find pathname -options [-print - exec -ok] pathname find命令所查找的目录路径.. 表示当前目录,/表示系统根路径 -pri ...
- shell学习(20)- xargs
xargs 是给命令传递参数的一个过滤器,也是组合多个命令的一个工具. xargs 可以将管道或标准输入(stdin)数据转换成命令行参数,也能够从文件的输出中读取数据. xargs 也可以将单行或多 ...
随机推荐
- 流量控制与RateLimiter
一背景 如何提高系统的稳定性,简单来说除了加机器外就是服务降级.限流.加机器就是常说的分布式,从整个架构的稳定性角度看,一般SOA每个接口的所能提供的单位时间服务能力是有上限.假如超过服务能力,一般会 ...
- Linux 防火墙管理及操作
1.关闭firewall:systemctl stop firewalld.service #停止firewallsystemctl disable firewalld.service #禁止fire ...
- PowerShell工作流学习-5-自定义活动
关键点: a)除了内置活动和自定义活动,还可以用C# 编写自定义活动,并将其包括在 XAML 工作流和脚本工作流中,若要将自定义活动添加到脚本工作流中,请使用 #Requires 语句的 Assemb ...
- Python开发——12.socket编程
一.OSI七层 1.物理层 物理层的主要功能是基于电气特性发送高低电压(高代表1,低代表0)形成电信号,使计算机完成组网以达到接入Internet的目的 2.数据链路层 数据链路层是用来定义电信号的分 ...
- 2018-04-10 我的GitHub诞生的日子,欢迎大家吐槽批评
我的GitHub,诞生的日子,欢迎大家吐槽与批评,嘻嘻 首先是自己想刷一下LeetCode上的代码,其次创建了自己的读书笔记以及面试经验与教训 下边是仓库的Git链接,欢迎大家的批评与修正,谢谢: L ...
- WordPress自动裁剪768w像素缩略图的解决办法
最新观赏鱼在折腾一个新的WordPress站点,即使通过后台把多媒体裁剪的宽高都设置为0时,移除主题可能存在的自动裁剪大小,WordPress依然会在上传图片的时候自动裁剪一个宽为768像素的图片.并 ...
- Glibc堆块的向前向后合并与unlink原理机制探究
i春秋作家:Bug制造机 原文来自:Glibc堆块的向前向后合并与unlink原理机制探究 玩pwn有一段时间了,最近有点生疏了,调起来都不顺手了,所以读读malloc源码回炉一点一点总结反思下. U ...
- Android JNI 学习(二):JNI 设计机制
本章我们重点说明以下JNI设计的问题,本章中提到的大多数设计问题都与native方法有关.至于调用相关的API的设计,我们会在后面进行介绍. 一.JNI接口函数和指针 native 代码通过调用JNI ...
- Java变量与运算
变量 1.变量名可以使用 数字.字母.下划线.$符号.数字包括 '0'~'9' 和某种语言中表示数字的任何 Unicode 字符.字母包括 'A'~'Z'.'a'~'z' 和某种语言中表示字母的任何 ...
- go语言面向对象编程之类型系统
go语言类型系统 类型系统,顾名思义是指一个语言的类型体系结构,一个典型的类型系统通常包含如下基本内容 基础类型:如byte,int,bool,float等 复合类型:如数组,指针,结构体 可以指向任 ...