Problem

bzoj3994 洛谷3327

题意:设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N,M\),求\(\sum_{i=1}^N\sum_{j=1}^Md(ij)\)

\(1\leq N,M,T\leq 5\times 10^4\)

Solution

第一次推出莫反式 ♪(*)

以下部分中小括号代表\(\gcd\),中括号代表取布尔值

一开始想枚举约数然后看有多少倍数出现过的,发现不好弄,转而想到 \(xy\) 的因数一定是 \(x\) 的因数和 \(y\) 的因数的积,去除冗余后可以得到 \(d(xy)=\sum_{a|x}\sum_{b|y}[(\frac xa,\frac yb)=1]=\sum_{a|x}\sum_{b|y}[(a,b)=1]\)

然后答案为:

\[\sum_{i=1}^N\sum_{j=1}^M\sum_{a|i}\sum_{b|j}[(a,b)=1]
\]

考虑优先枚举\(a,b\)

\[\sum_{a=1}^N\sum_{b=1}^M[(a,b)=1]\lfloor \frac Na\rfloor \lfloor \frac Mb\rfloor
\]

发现里头那个\(\gcd\)可以套路地搞事了:

构造\(f(x)=\sum_{a=1}^N\sum_{b=1}^M[(a,b)=x]\lfloor \frac Na\rfloor \lfloor \frac Mb\rfloor\)

构造\(F(x)=\sum_{a=1}^N\sum_{b=1}^M[x|(a,b)]\lfloor \frac Na\rfloor \lfloor \frac Mb\rfloor\)

可以根据定义式得到\(F(x)=\sum_{x|n}f(n)\),经过莫比乌斯反演,得到\(f(x)=\sum_{x|n}\mu(\frac nx)F(n)\)

答案为\(f(1)=\sum_n\mu(n)F(n)\)

由于\(F(n)\)中可以将\(\gcd\)的限制条件放在前面的\(\sum\)里,所以\(F(n)=\sum_{n|a}\sum_{n|b}\lfloor \frac Na\rfloor \lfloor \frac Mb \rfloor\)

所以答案为

\[f(1)=\sum_d\mu(d)\sum_{d|a}\sum_{d|b}\lfloor \frac Na\rfloor \lfloor \frac Mb \rfloor
\]

发现后面的式子不好求,可以构造\(g(x)=\sum_{i=1}^x\lfloor \frac xi\rfloor\)

则最终的式子为

\[Ans=\sum_d\mu(d)g(\lfloor \frac nd\rfloor)g(\lfloor \frac md \rfloor)
\]

分块解决即可

至于如何求\(g(x)\),可以发现其实\(g(n)=\sum_{i=1}^nd(i)\),利用线性筛完约数函数\(d(i)\)后求个前缀和即可

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; inline void read(int&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
} const int N=50101;
int pri[N],is[N];
int u[N],g[N],d[N];
int tp;ll sm; int main(){
g[1]=u[1]=1;
for(int i=2;i<N;++i){
if(!is[i])pri[++tp]=i,u[i]=-1,g[i]=2,d[i]=1;
for(int j=1,k;j<=tp and (k=i*pri[j])<N;++j){
is[k]=1;
if(i%pri[j])u[k]-=u[i],g[k]=g[i]*2,d[k]=1;
else {
u[k]=0,d[k]=d[i]+1;
g[k]=g[i]/(d[i]+1)*(d[i]+2);
break;
}
}
g[i]+=g[i-1],u[i]+=u[i-1];
}
int n,m,T;read(T);
while(T--){
read(n),read(m),sm=0ll;
if(n>m)swap(n,m);
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
sm+=1ll*(u[j]-u[i-1])*g[n/i]*g[m/i];
}printf("%lld\n",sm);
}return 0;
}

题解-SDOI2015 约数个数和的更多相关文章

  1. P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)

    P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...

  2. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  3. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  4. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  5. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  6. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  7. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  8. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  9. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

随机推荐

  1. spring创建bean模式singleton与prototype的区别

    spring 创建bean有单例模式(singleton)和原始模型模式(prototype)这两种模式. 在默认的情况下,Spring中创建的bean都是单例模式的(注意Spring的单例模式与Go ...

  2. 16、JDBC-DBUtils封装

    使用DBUtils写个通用CURD小工具 依赖配置 pom.xml <?xml version="1.0" encoding="UTF-8"?> & ...

  3. Selenium模块的使用

    Selenium是一个Web的自动化测试工具,最初是为网站自动化测试而开发的,类型像我们玩游戏用的按键精灵,可以按指定的命令自动操作,不同是Selenium 可以直接运行在浏览器上,它支持所有主流的浏 ...

  4. vue基础篇---watch监听

    watch可以让我们监控一个值的变化.从而做出相应的反应. 示例: <div id="app"> <input type="text" v-m ...

  5. Hbuilder开发app时生成ios要的mobileprovision和p12文件步骤.

    1.在MAC电脑.钥匙串串访问->证书助理->从证书颁发机构请求证书,创建一个证书为certSigningRequest文件 2.在Apple Developer中的Certificate ...

  6. python模块之logging模块

    1. 低配版 # 指定显示信息格式 import logging logging.basicConfig( level=20, # 设置显示或写入的起始级别 format="%(asctim ...

  7. U盘中毒后变为快捷方式的解决方法

    今天神奇地发现,如果U盘中毒后,变为快捷方式,那么你可以有三种解决方法: (1)在网上下一个脚本程序,将文件恢复: (2)使用U盘查杀的工具,一般的工具应该有U盘文件恢复这一项,比如金山的杀毒软件: ...

  8. idea中配置Springboot热部署

    1 pom.xml文件 注:热部署功能spring-boot-1.3开始有的 <!--添加依赖--> <dependency> <groupId>org.sprin ...

  9. 五、文件IO——dup 函数

    5.1 dup 函数---复制文件描述符 5.1.1 简单cat实现及输入输出重定向 io.c #include <sys/types.h> #include <sys/stat.h ...

  10. springboot项目怎么部署到外部tomcat

    spring-boot项目中,默认提供内嵌的tomcat,所以打包直接生成jar包,用Java -jar命令就可以启动. 但是也有一定的需求,会使用外部tomcat来部署项目.下面来看: 1.新建项目 ...